Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 757-766    DOI: 10.3785/j.issn.1008-973X.2021.04.019
机械与能源工程     
单桩式海上风力机整体化地震反应
席仁强1,2(),杜修力1,*(),王丕光1,许成顺1,许坤1
1. 北京工业大学 城市与工程安全减灾教育部重点实验室,北京 100124
2. 常州大学 机械与轨道交通学院,江苏 常州 213164
Integrated seismic response of monopile supported offshore wind turbines
Ren-qiang XI1,2(),Xiu-li DU1,*(),Pi-guang WANG1,Cheng-shun XU1,Kun XU1
1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2. School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
 全文: PDF(2685 KB)   HTML
摘要:

为了探讨风-波浪-地震共同作用下单桩式海上风机(OWTs)的动力行为,以National Renewable Energy Laboratory(NREL)5 MW风力发电机为研究对象,将风、地震作为独立事件,根据风-波浪统计关系确定波浪谱参数. 改进FAST软件以模拟土-结相互作用,考虑停机、运行和应急停机3种工况,采用气动-伺服-水动-弹性耦合方法分析海上风机地震响应. 算例表明,工作状态显著影响海上风机支撑结构的运动和内力,规律与地震强弱有关;地震动显著影响叶片挥舞振动速度;在风-波浪-地震的共同作用下,海上风机支撑结构危险截面剪力和弯矩峰值超过极端风-波浪作用效应.

关键词: 单桩式海上风机风-波浪-地震共同作用风-波浪统计关系土-结相互作用地震响应    
Abstract:

The 5 MW wind turbine created by National Renewable Energy Laboratory (NREL) was taken as the prototype in order to analyze the dynamic behavior of monopile supported offshore wind turbines (OWTs) excited by the combination of wind, wave and earthquake. Then parameters of the wave spectrum were determined by the statistical relationship between wind and wave assuming that wind and earthquake were independent events. The FAST code was modified to simulate the soil-structure interaction, and the seismic response of OWTs was analyzed by using aero-servo-hydro-elastic coupled method. The running, park and emergency shutdown operational conditions were included. Results show that operational conditions significantly influence the deformations and internal forces of the support structure of wind turbines, and the principles are associated with the intensity of earthquakes. The oscillation velocity of the blade is considerably influenced by earthquakes. The amplitudes of shear and bending moment of critical section for the support structure may exceed those excited by extreme wind-wave under the combined excitation of wind, wave and seismic.

Key words: monopile supported offshore wind turbine    combined excitation of wind-wave-earthquake    statistical relation between wind and wave    soil-structure interaction    seismic response
收稿日期: 2020-04-03 出版日期: 2021-05-07
CLC:  TK 89  
基金资助: 国家自然科学基金资助项目(51808061,51722801);国家重点研发计划资助项目(2018YFC1504302)
通讯作者: 杜修力     E-mail: xirenqiang@cczu.edu.cn;duxiuli@bjut.edu.cn
作者简介: 席仁强(1984—),男,博士生,从事地震工程的研究. orcid.org/0000-0002-7727-8719. E-mail: xirenqiang@cczu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
席仁强
杜修力
王丕光
许成顺
许坤

引用本文:

席仁强,杜修力,王丕光,许成顺,许坤. 单桩式海上风力机整体化地震反应[J]. 浙江大学学报(工学版), 2021, 55(4): 757-766.

Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.019        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/757

图 1  NREL 5 MW单桩式海上风机
图 2  NREL 5 MW海上风机叶片单元
Vhub /(m·s?1 HS /m TP /s Vhub /(m·s?1 HS /m TP /s
0 1.0 6.0 15 2.0 6.2
5 1.1 5.8 18 2.4 6.7
11 1.5 5.8 21 2.9 7.0
13 1.8 5.9 24 3.4 7.8
表 1  轮毂高度处的平均风速-波浪经验关系
图 3  典型场地土层分布及参数
序号 地震 所选分量 PGA /g SaT1)/g 序号 地震 所选分量 PGA /g SaT1)/g
1 Kocaeli,1999 ARC090 0.22 0.05 15 Superstition Hills,1987 POE360 0.30 0.11
2 Duzce,1999 BOL000 0.73 0.15 16 Cape Mendocino,1992 RIO270 0.38 0.05
3 Loma-Prieta,1989 CAP000 0.50 0.06 17 Kobe,1995 SHI000 0.24 0.10
4 Chi-Chi,1999 CHY101E 0.28 0.38 18 Friuli,1976 TMZ000 0.35 0.03
5 Imperial-Valley,1979 DLT262 0.21 0.16 19 Landers,1992 YER270 0.25 0.12
6 Kocaeli,1999 DZC180 0.31 0.18 20 Manjil,1990 184327 0.27 0.17
7 Imperial-Valley,1979 E11140 0.36 0.15 21 Darfield,2010 CN26W 0.19 0.34
8 Loma-Prieta,1989 G03090 0.36 0.12 22 El-Mayor,2010 CXO090 0.18 0.22
9 Hector,1999 HEC090 0.34 0.08 23 Duzce,1999 DZC270 0.27 0.13
10 Superstition Hills,1987 ICC090 0.26 0.13 24 El-Mayor,2010 GEO000 0.27 0.35
11 Northridge,1994 LOS000 0.41 0.11 25 Darfield,2010 HCS89W 0.15 0.22
12 Northridge,1994 MUL009 0.42 0.10 26 Chi-Chi,1999 TCU070N 0.16 0.27
13 Kobe,1995 NIS000 0.51 0.07 27 Chi-Chi,1999 TCU109N 0.16 0.36
14 SanFernando,1971 PEL090 0.21 0.09 ? ? ? ? ?
表 2  输入地震动及其工程参数
振型 f0
本文模型 文献[24]模型
前后向1阶 0.242 0.248
前后向2阶 1.568 1.546
侧向1阶 0.244 0.246
侧向2阶 1.519 1.533
表 3  NREL 5 MW单桩式海上风机支撑结构自振频率
图 4  NREL 5 MW海上风机前后向振型
组合 Vhub /(m·s?1 HS /m TP /s 地震 运行状态
LC-1 0 1.0 6.0 参与 停机
LC-2 11 1.5 5.8 参与 运行
LC-3 11 1.5 5.8 参与 应急停机
表 4  风-波浪-地震荷载组合
图 5  输入地震动为DZC记录的海上风机塔顶加速度时程
图 6  输入地震动为DZC记录的海上风机应急停机操作
图 7  输入地震动为DZC记录的海上风机动力响应时程
图 8  输入地震动为CHY记录的海上风机塔顶加速度时程
图 9  输入地震动为CHY记录的海上风机弯矩响应时程
图 10  海上风机支撑结构泥面剪力峰值
图 11  支撑结构泥面弯矩峰值-地震动加速度反应谱关系
图 12  不同工况的海上风机支撑结构泥面弯矩峰值
图 13  不同工况下的海上风机塔顶位移峰值
图 14  不同工况下的海上风机塔顶加速度峰值
图 15  海上风机叶片翼尖速度时程
图 16  海上风机叶片翼尖速度增量峰值
图 17  输入地震动反应谱及时程
图 18  海上风机支撑结构响应峰值
图 19  海上风机支撑结构的泥面内力峰值
1 ARANY L, BHATTACHARYA S, ADHIKARI S, et al An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models[J]. Soil Dynamics and Earthquake Engineering, 2015, 74: 40- 45
doi: 10.1016/j.soildyn.2015.03.007
2 Global Wind Energy Council. Global Wind Report: annual market update 2019 [EB/OL]. [2020-03-24]. https://www.gwec.net/.
3 徐龙军, 何晓云, 谢礼立 海上风电工程基础结构抗震性能研究[J]. 地震工程与工程振动, 2012, 32 (3): 1- 7
XU Long-jun, HE Xiao-yun, XIE Li-li On seismic performance of offshore wind turbine foundation and structures[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32 (3): 1- 7
4 CARSWELL W, ARWADE S R, DEGROOT D J, et al Natural frequency degradation and permanent accumulated rotation for offshore wind turbine monopiles in clay[J]. Renewable Energy, 2016, 97: 319- 330
doi: 10.1016/j.renene.2016.05.080
5 KIM D H, LEE S G, LEE I K Seismic fragility analysis of 5 MW offshore wind turbine[J]. Renewable Energy, 2014, 65: 250- 256
doi: 10.1016/j.renene.2013.09.023
6 ANASTASOPOULOS I, THEOFILOU M Hybrid foundation for offshore wind turbines: environmental and seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2016, 80: 192- 209
doi: 10.1016/j.soildyn.2015.10.015
7 WANG P, ZHAO M, DU X, et al Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 47- 57
doi: 10.1016/j.soildyn.2018.04.028
8 DE RISI R, BHATTACHARYA S, GODA K Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records[J]. Soil Dynamics and Earthquake Engineering, 2018, 109: 154- 172
doi: 10.1016/j.soildyn.2018.03.015
9 WANG X, ZENG X, YANG X, et al Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modeling[J]. Applied Energy, 2019, 235: 1335- 1350
doi: 10.1016/j.apenergy.2018.11.057
10 ALI A, RISI R D, SEXTOS A, et al Seismic vulnerability of offshore wind turbines to pulse and non-pulse records[J]. Earthquake Engineering and Structural Dynamics, 2020, 49 (1): 24- 50
doi: 10.1002/eqe.3222
11 ISHIHARA T, SARWAR M W. Numerical and theoretical study on seismic response of wind turbines [C]// 2008 European Wind Energy Conference and Exhibition. Brussels: [s.n.], 2008.
12 WANG L, ZHANG Y Influence of simplified models on seismic response analysis of wind turbine towers[J]. Applied Mechanics and Material, 2011, 94-96: 369- 374
doi: 10.4028/www.scientific.net/AMM.94-96.369
13 徐磊, 李德源, 莫文威, 等 基于非线性气弹耦合模型的风力机柔性叶片随机响应分析[J]. 振动与冲击, 2015, 34 (10): 20- 27
XU Lei, LI De-yuan, MO Wen-wei, et al Random response analysis for flexible blade of a wind turbine based on nonlinear aero-elastic coupled model[J]. Journal of Vibration and Shock, 2015, 34 (10): 20- 27
14 ZHENG X Y, LI H, RONG W, et al Joint earthquake and wave action on the monopile wind turbine foundation: an experimental study[J]. Marine Structures, 2015, 44: 125- 141
doi: 10.1016/j.marstruc.2015.08.003
15 WANG W, GAO Z, LI X, et al Model test and numerical analysis of a multi-pile offshore wind turbine under seismic, wind, wave, and current loads[J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139 (3): 1- 17
16 YANG Y, LI C, BASHIR M, et al Investigation on the sensitivity of flexible foundation models of an offshore wind turbine under earthquake loadings[J]. Engineering Structures, 2019, 183: 756- 769
doi: 10.1016/j.engstruct.2019.01.050
17 ZUO H, BI K, HAO H, et al Influence of earthquake ground motion modelling on the dynamic responses of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 151- 167
doi: 10.1016/j.soildyn.2019.03.008
18 YANG Y, MUSA B, CHUN L, et al Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine[J]. Renewable Energy, 2020, 157: 1171- 1184
doi: 10.1016/j.renene.2020.05.077
19 JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5 MW reference wind turbine for offshore system development [R/OL]. (2009-02-01) [2016-11-12]. https://www.nrel.gov/docs/fy09osti/38060.pdf.
20 JONKMAN J M, BUHL M L. FAST user’s guide [R/OL]. (2005-08-12) [2017-03-10]. https://www.nrel.gov/docs/fy06osti/38230.pdf.
21 PROWELL I, ELGAMAL A, UANG C M, et al Shake table testing and numerical simulation of a utility-scale wind turbine including operational effects[J]. Wind Energy, 2014, 17 (7): 997- 1016
doi: 10.1002/we.1615
22 JONKMAN J, MUSIAL W. Offshore code comparison collaboration for IEA Wind, Task 23 offshore wind technology and deployment [R/OL]. (2010-03-31). [2017-06-10]. https://www.nrel.gov/docs/fy11osti/48191.pdf.
23 International Electrotechnical Commission. Wind turbines Part 3: design requirements for offshore wind turbines: IEC 61400-3 [S]. Geneva, Switzerland: IEC, 2009.
24 JONKMAN J B. TurbSim user’s guide: Version 1.50 [R/OL]. (2009-09-01). [2017-07-20]. https://www.nrel.gov/docs/fy09osti/46198.pdf.
25 BREDMOSE H, LARSEN S E, MATHA D, et al. Collation of offshore wind wave dynamics [R/OL]. (2012-11-30) [2017-03-06]. https://orbit.dtu.dk/en/publications/collation-of-offshore-windwave-dynamics-marine-renewables-infrast.
26 LI Q, YANG W An improved method of hydrodynamic pressure calculation for circular hollow piers in deep water under earthquake[J]. Ocean Engineering, 2013, 72: 241- 256
doi: 10.1016/j.oceaneng.2013.07.001
27 ASAREH M A, SCHONBERG W, VOLZ J Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines[J]. Renewable Energy, 2016, 86: 49- 58
doi: 10.1016/j.renene.2015.07.098
28 YANG Y, YE K, LI C, et al Dynamic behavior of wind turbines influenced by aerodynamic damping and earthquake intensity[J]. Wind Energy, 2018, 21 (1): 1- 17
doi: 10.1002/we.2140
29 ARANY L, BHATTACHARYA S, MACDONALD J H G, et al Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI[J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 18- 32
doi: 10.1016/j.soildyn.2015.12.011
30 PASSON P. Derivation and description of the soil-pile interaction models [R/OL]. (2013-08-01) [2018-01-22]. https://www.nrel.gov/forum/wind/viewtopic.php? topic-Distributed Spring Model for Monopile.
31 CARSWELL W, JOHANSSON J, L?VHOLT F, et al Foundation damping and the dynamics of offshore wind turbine monopiles[J]. Renewable Energy, 2015, 80: 724- 736
doi: 10.1016/j.renene.2015.02.058
32 PROWELL I, ELGAMAL A, UANG C, et al. Estimation of seismic load demand for a wind turbine in the time domain [R/OL]. (2010-03-01) [2017-05-26]. https://www.nrel.gov/docs/fy10osti/47536.pdf.
33 YUAN C, CHEN J, LI J, et al Fragility analysis of large-scale wind turbines under the combination of seismic and aerodynamic loads[J]. Renewable Energy, 2017, 113: 1122- 1134
doi: 10.1016/j.renene.2017.06.068
34 DU X, WANG P, ZHAO M Simplified formula of hydrodynamic pressure on circular bridge piers in the time domain[J]. Ocean Engineering, 2014, 85: 44- 53
doi: 10.1016/j.oceaneng.2014.04.031
35 HANSEN M O L, S?RENSEN J N, VOUTSINAS S, et al State of the art in wind turbine aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2006, 42 (4): 285- 330
doi: 10.1016/j.paerosci.2006.10.002
[1] 王维,高尚信,李爱群,王星星. 基于非对称模型的碟簧隔震单自由度体系地震响应[J]. 浙江大学学报(工学版), 2020, 54(6): 1095-1105.
[2] 徐军, 李英民, 杨旭尧, 胡晓平. 多点激励下高烈度区接触网系统地震响应分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1575-1582.
[3] 黄博,李玲,凌道盛,陈星耀. 附加衰减模式及其对场地地震响应影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1170-1179.
[4] 姚霄雯, 蒋建群. 地震动强度指标与高拱坝响应的相关性[J]. J4, 2014, 48(2): 254-261.
[5] 章永乐,蒋建群,刘加进,王振宇. 框架结构地震损伤评估与抗震设计[J]. J4, 2011, 45(7): 1294-1300.
[6] 吴玉华, 楼文娟. 水平随机地震激励下弹性圆拱的半解析法[J]. J4, 2010, 44(1): 156-159+165.
[7] 谢旭 吴善幸. 考虑支座破坏影响的防止落梁装置地震响应[J]. J4, 2006, 40(12): 2180-2185.
[8] 罗尧治 王荣. 索穹顶结构动力特性及多维多点抗震性能研究[J]. J4, 2005, 39(1): 39-45.