Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 750-756    DOI: 10.3785/j.issn.1008-973X.2021.04.018
机械与能源工程     
基于变桨系统的功率与载荷双目标协同控制
曾凌霄(),刘宏伟*(),李伟,林勇刚,顾亚京
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Cooperative control of power and load based on pitch system
Ling-xiao ZENG(),Hong-wei LIU*(),Wei LI,Yong-gang LIN,Ya-jing GU
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1629 KB)   HTML
摘要:

为了保证机组功率的稳定及尽可能降低机组载荷,以600 kW水平轴海流能发电机组为对象,围绕功率和载荷2个方面设计基于功率与载荷双目标的协同变桨控制策略. 在功率方面,基于黄金分割法将流速段分割,每段采用不同的fuzzy PID控制;在降载方面,采用d-q变换的方式,从叶轮坐标系将叶根弯矩变换到d-q坐标系,实现了三维转二维的简化,基于PID进行控制,经过Coleman反变换将结果输出给变桨执行机构,完成独立变桨. 通过Matlab/Simulink 和海流能分析软件Bladed进行联合仿真. 结果表明,采用该控制策略,可以在保证功率稳定的同时,显著降低叶轮的不平衡载荷.

关键词: 水平轴海流能机组独立变桨黄金分割法d-q变换功率控制载荷控制发电    
Abstract:

A collaborative pitch control strategy was designed based on power and load for 600 kW horizontal axis current turbine in order to ensure the stability of the power and reduce the load as much as possible. The flow rate segment was divided based on golden section method in terms of power, and each segment adopted different fuzzy PID control. The d-q transformation method was used to transform the blade root bending moment from the impeller coordinate system to the d-q coordinate system in terms of load reduction. Then the simplification of three-dimensional to two-dimensional transformation was realized. The results were output to the pitch actuator through Coleman inverse transformation in order to complete the independent pitch based on PID control. The joint simulation of Matlab/Simulink and current energy analysis software Bladed was conducted. Results show that the proposed control strategy can significantly reduce the unbalanced load of the impeller while ensuring the power stability.

Key words: horizontal axis marine turbine    individual pitch    golden section method    d-q transformation    power control    load control    electric generating
收稿日期: 2020-10-16 出版日期: 2021-05-07
CLC:  TK 73  
基金资助: 国家重点研发计划资助项目(2018YFB1501900);国家自然科学基金资助项目(51775487);浙江省重点研发计划资助项目(2021C03182)
通讯作者: 刘宏伟     E-mail: zelexshaw@163.com;zju000@163.com
作者简介: 曾凌霄(1995—),男,硕士生,从事可再生能源发电的研究. orcid.org/0000-0002-2378-9214. E-mail: zelexshaw@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曾凌霄
刘宏伟
李伟
林勇刚
顾亚京

引用本文:

曾凌霄,刘宏伟,李伟,林勇刚,顾亚京. 基于变桨系统的功率与载荷双目标协同控制[J]. 浙江大学学报(工学版), 2021, 55(4): 750-756.

Ling-xiao ZENG,Hong-wei LIU,Wei LI,Yong-gang LIN,Ya-jing GU. Cooperative control of power and load based on pitch system. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 750-756.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.018        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/750

图 1  能量捕获系数的特性曲线
图 2  叶素受力示意图
图 3  基于模型的桨距角优选过程
图 4  黄金分割示意图
图 5  黄金分割法分割流速区间过程
图 6  叶根弯矩控制过程
图 7  功率与载荷协同控制整体方案
参数 数值
额定功率 600 kW
叶轮直径 16 m
桨距角 0~90°
发电机额定转矩 19 108 N·m
发电机额定转速 300 r/min
表 1  机组基本信息
图 8  基于黄金分割的功率与载荷协同控制逻辑框图
图 9  与统一变桨控制功率的对比
图 10  与统一变桨控制叶根弯矩的对比
图 11  3种方案的功率情况
图 12  3种方案的叶根弯矩情况
图 13  不同流速下的功率
图 14  不同流速下的叶根弯矩
图 15  流速模拟曲线
1 ESTEBAN M, LEAFY D Current developments and future prospects of offshore wind and ocean energy[J]. Applied Energy, 2012, 90 (1): 128- 136
doi: 10.1016/j.apenergy.2011.06.011
2 ZHOU Zhi-bin, BENBOUZID M, CHARPENTIER J F, et al Developments in large marine current turbine technologies: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 71 (5): 852- 858
3 WANG Bing-zhen, HU Teng-yan, GUO Yi, et al Research on pitch control strategies of horizontal axis tidal current turbine[J]. China Ocean Engineering, 2020, 34 (2): 223- 231
doi: 10.1007/s13344-020-0021-9
4 LIU Hong-wei, LI Yang-jian, LIN Yong-gang, et al. Load reduction for two-bladed horizontal-axis tidal current turbines based on individual pitch control[J]. Ocean Engineering, 2020, 207 (7): 51- 61
5 WINTER A I. Differences in fundamental design drivers for wind and tidal turbines [C]// Oceans. Santander, Spain: IEEE, 2011: 1-10.
6 刘宏伟, 何俊, 李伟, 等 水平轴海流能发电机组独立变桨非对称载荷控制方法[J]. 机械工程学报, 2018, 54 (20): 89- 95
LIU Hong-wei, HE Jun, LI Wei, et al. Asymmetric load control method for individual pitch of horizontal axis marine current turbine[J]. Journal of Mechanical Engineering, 2018, 54 (20): 89- 95
doi: 10.3901/JME.2018.20.089
7 KRAUSE P, WASYNCZUK O, SUDHOFF S, et al. Analysis of electric machinery and drive systems [M]. 3rd ed. Hoboken: IEEE, 2013: 11-26.
8 MOHAMAD A, ESMAIL M, MIRRAHIM M, et al A novel fuzzy PI controller for improving autonomous network by considering uncertainty[J]. Sustainable Energy, Grids and Networks, 2019, 18 (6): 76- 87
9 ZHANG Fu-zheng High-accuracy method for calculating correlated color temperature with a lookup table based on golden section search[J]. Optik, 2019, 193 (6): 13- 19
10 李林欢, 刘斌, 苏宏业, 等 基于输出误差预测的模糊预测PID控制及应用[J]. 浙江大学学报: 工学版, 2004, 38 (7): 33- 37
LI Lin-huan, LIU Bin, SU Hong-ye, et al Fuzzy predictive PID controller based on output-error prediction and its application[J]. Journal of Zhejiang University: Engineering Science, 2004, 38 (7): 33- 37
11 ZHONG Qi, ZHANG Bin, BAO Hui-ming, et al Analysis of pressure and flow compound control characteristics of an independent metering hydraulic system based on a two-level fuzzy controller[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2019, 20 (3): 184- 200
doi: 10.1631/jzus.A1800504
12 彭继慎, 丁紫佩, 丁柏闻 基于方位角权重系数分配的独立变桨距控制[J]. 控制工程, 2014, (6): 829- 832
PENG Ji-shen, DING Zi-pei, DING Bai-wen Individual pitch control based on azimuth angle weight number assignment[J]. Control Engineering of China, 2014, (6): 829- 832
doi: 10.3969/j.issn.1671-7848.2014.06.007
13 黄良沛, 邹东升, 陈磊, 等 一种模糊PID控制器的设计与仿真[J]. 机械工程师, 2018, (11): 7- 9
HUANG Liang-pei, ZOU Dong-sheng, CHEN Lei, et al Design and simulation of a fuzzy PID controller[J]. Mechanical Engineer, 2018, (11): 7- 9
doi: 10.3969/j.issn.1002-2333.2018.11.002
14 曹成帅. 基于改进PID的风力发电机组独立变桨距控制策略研究[D]. 乌鲁木齐: 新疆农业大学, 2016.
CAO Cheng-shuai. Research on control strategy of wind turbines individual variable pitch based on improving PID [D]. Urumqi: Xinjiang Agricultural University, 2016.
15 LEE L, VANZWIETEN J Adaptive individual blade pitch control of an ocean current turbine for load reduction[J]. FAU Undergraduate Research Journal, 2017, 6 (1): 51
16 SELVAM K, KANEV S, VAN J W, et al Feedback-feedforward individual pitch control for wind turbine load reduction[J]. International Journal of Robust and Nonlinear Control, 2009, 19 (1): 72- 91
doi: 10.1002/rnc.1324
17 闫学勤, 王维庆, 王海云 降低风力机叶轮载荷独立变桨距控制策略[J]. 可再生能源, 2019, 37 (8): 1241- 1246
YAN Xue-qin, WANG Wei-qing, WANG Hai-yun Individual pitch control for decreasing wind turbines of rotor load[J]. Renewable Energy Resources, 2019, 37 (8): 1241- 1246
doi: 10.3969/j.issn.1671-5292.2019.08.021
[1] 李阳健,何伟,刘宏伟,李伟,林勇刚,顾亚京. 水平轴海流能机组传动链主动阻尼控制技术[J]. 浙江大学学报(工学版), 2020, 54(7): 1355-1361.
[2] 张爱兵,闫文凯,庞丹丹,王保林,王骥. 热电偶臂构型尺寸对环形热电发电器性能的影响[J]. 浙江大学学报(工学版), 2020, 54(5): 947-953.
[3] 刘鹏程,徐九凌,黄家骏,张朝杰. 基于模糊逻辑控制的卫星功率控制方法[J]. 浙江大学学报(工学版), 2020, 54(5): 1029-1038.
[4] 王光烛,陈坚红,洪细良,王小荣,陈强峰,盛德仁,李蔚. 联合循环发电系统全生命周期?环境学评估[J]. 浙江大学学报(工学版), 2019, 53(5): 972-980.
[5] 徐泽坤,沈宏宇,胡涛,李响,董树荣. 新型VBO接口芯片静电放电防护器件[J]. 浙江大学学报(工学版), 2019, 53(4): 794-800.
[6] 林勇刚,许建强,刘宏伟,李伟. 基于数字液压缸组的波浪能装置压力匹配[J]. 浙江大学学报(工学版), 2019, 53(10): 1892-1897.
[7] 陈学军, 杨永明. 采用经验小波变换的风力发电机振动信号消噪[J]. 浙江大学学报(工学版), 2018, 52(5): 988-995.
[8] 于冉冉, 刘联胜, 葛明慧, 赵景维. 太阳能温差发电系统的性能[J]. 浙江大学学报(工学版), 2018, 52(4): 769-774.
[9] 李新, 肖龙, 刘国梁, 邵雨亭, 陈国柱. 基于相位补偿和交叉前馈补偿的VSG功率振荡抑制策略[J]. 浙江大学学报(工学版), 2018, 52(3): 569-576.
[10] 杜锦华, 薛运田, 刘全威. 永磁起动/发电机系统的参数匹配标定与实现[J]. 浙江大学学报(工学版), 2017, 51(9): 1851-1860.
[11] 罗凯, 孙大明, 章杰, 张宁, 王凯, 徐雅, 邹江. 用于热声发电的曲柄连杆式换能器工作特性[J]. 浙江大学学报(工学版), 2017, 51(8): 1619-1625.
[12] 张利慧, 董辉, 赵亮. 液化天然气冷能发电复合流程的构建及能效分析[J]. 浙江大学学报(工学版), 2017, 51(7): 1374-1380.
[13] 张心怡, 杨家强, 张晓军. 基于机会约束的含多风电场动态经济调度[J]. 浙江大学学报(工学版), 2017, 51(5): 976-983.
[14] 章杰, 孙大明, 王凯, 罗凯, 张宁, 邹江. 行波热声发电系统的阻抗匹配[J]. 浙江大学学报(工学版), 2017, 51(3): 494-499.
[15] 童基均, 李琳, 林勤光, 朱丹华. 采用平滑伪Wigner-Ville分布的SSVEP脑机接口系统[J]. 浙江大学学报(工学版), 2017, 51(3): 598-604.