Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 742-749    DOI: 10.3785/j.issn.1008-973X.2021.04.017
机械与能源工程     
基于障碍物的轴流泵叶片空化控制
赵国寿1(),伍锐1,2,车邦祥3,曹琳琳1,*(),吴大转1,4
1. 浙江大学 化工机械研究所,浙江 杭州 310027
2. 上海船舶运输科学研究所,上海 200135
3. 北京航天器系统工程研究所,北京 100094
4. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Blade cavitation control by obstacles in axial-flow pump
Guo-shou ZHAO1(),Rui WU1,2,Bang-xiang CHE3,Lin-lin CAO1,*(),Da-zhuan WU1,4
1. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China
2. Shanghai Ship and Shipping Research Institute, Shanghai 200135, China
3. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1631 KB)   HTML
摘要:

基于前期水翼云空化控制与轴流泵空化机理的研究成果,面向轴流泵叶片的空化控制,设计并列障碍物条放置于叶片吸力面特定位置. 采用数值模拟与水洞实验方法,研究障碍物的空化控制效果与机理. 结果表明,障碍物虽然对泵的水力效率造成一定影响,在设计点效率下降5.6%,但诱发的前部高压可以有效控制叶片前缘片状空化的产生与发展. 障碍物自身诱发了一定程度的剪切空化团,因与前缘空化产生机理与位置不同,剪切空化具备较强的抗扰动能力,能够有效抵抗来流干扰引起的空化不稳定性.

关键词: 轴流泵障碍物空化控制水洞试验    
Abstract:

A pair of parallel obstacle bars on the suction surface of pump blade was designed based on previous investigations on hydrofoil cavitation control and cavitation mechanism of this pump in order to control cavitation in an axial-flow pump. The cavitation experiments and numerical simulation were conducted to examine the control effects and reveal the control mechanism. Results show that the raised pressure around the leading edge by the obstacle can effectively depress blade cavitation generation and development although the hydraulic efficiency is inevitably affected and degrades 5.6% at the design point. The shear cavitation is triggered by the obstacles, which is more capable to resist the cavitation instabilities caused by inflow perturbations considering the generation mechanism and cavitation position.

Key words: axial-flow pump    obstacles    cavitation control    water tunnel experiment
收稿日期: 2020-04-28 出版日期: 2021-05-07
CLC:  TH 312  
基金资助: 喷水推进技术重点实验室基金资助项目(6142223180107)
通讯作者: 曹琳琳     E-mail: zgszju@zju.edu.cn;caolinlin@zju.edu.cn
作者简介: 赵国寿(1992—),男,博士生,从事空化机理与控制的研究. orcid.org/0000-0003-4056-0013. E-mail: zgszju@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵国寿
伍锐
车邦祥
曹琳琳
吴大转

引用本文:

赵国寿,伍锐,车邦祥,曹琳琳,吴大转. 基于障碍物的轴流泵叶片空化控制[J]. 浙江大学学报(工学版), 2021, 55(4): 742-749.

Guo-shou ZHAO,Rui WU,Bang-xiang CHE,Lin-lin CAO,Da-zhuan WU. Blade cavitation control by obstacles in axial-flow pump. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 742-749.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.017        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/742

参数 给定值
叶轮直径D/m 0.2
轮毂比 0.35
叶轮叶片数ZR 7
导叶叶片数ZS 11
叶顶间隙/mm 0.95
设计转速n/(r·min?1) 1 260
设计流量Q0/(m3·s?1) 0.108
设计扬程H/m 1.0
水密度ρ(105 Pa,25 °C)/( kg·m?3) 997
重力加速度g/(m·s?2) 9.81
水饱和蒸汽压pv(25 °C)/Pa 3 169
表 1  泵设计参数与运行参数
图 1  泵测试系统
图 2  障碍物布局与剖面图
图 3  障碍物叶轮实物图
图 4  全流场计算域
图 5  叶轮网格划分
图 6  y+分布
图 7  泵水力性能曲线
图 8  泵空化性能曲线
图 9  空化发展阶段Ⅰ的图像相位平均值和标准差
图 11  空化发展阶段Ⅲ的图像相位平均值和标准差
图 10  空化发展阶段Ⅱ的图像相位平均值和标准差
图 12  叶片载荷分布
图 13  叶片span面湍动能分布
图 14  叶片压力监测点
图 15  压力时域分布
图 16  压力频谱
1 BRENNEN C E. Hydrodynamics of pumps [M]. Cambridge: Cambridge University Press, 2011.
2 潘中永, 关醒凡 泵诱导轮理论与设计[J]. 农业机械学报, 2000, 31 (5): 45- 47
PAN Zhong-yong, GUAN Xing-fan Theory and design of a pump inducer[J]. Transactions of the Chinese Society of Agricultural Machinery, 2000, 31 (5): 45- 47
doi: 10.3969/j.issn.1000-1298.2000.05.013
3 胡雷俊, 曹琳琳, 车邦祥, 等 基于高空化性能的对转泵喷推进器设计[J]. 工程热物理学报, 2017, 38 (9): 1877- 1881
HU Lei-jun, CAO Lin-lin, CHE Bang-xiang, et al Design of contra rotating waterjet pump based on high cavitation performances[J]. Journal of Engineering Thermophysics, 2017, 38 (9): 1877- 1881
4 吴昱, 朱祖超 利用引射结构提高离心泵的汽蚀性能[J]. 工程设计学报, 2002, 9 (2): 86- 88
WU Yu, ZHU Zu-chao Using jetting equipment to improve the suction performance of centrifugal pump[J]. Engineering Design, 2002, 9 (2): 86- 88
doi: 10.3785/j.issn.1006-754X.2002.02.009
5 HORIGUCHI H, WATANABE S, TSUJIMOTO Y Theoretical analysis of cavitation in inducers with unequal blades with alternate leading edge cutback: partⅠ-analytical methods and the results for smaller amount of cutback[J]. Journal of Fluids Engineering, 2000, 122 (2): 412- 418
doi: 10.1115/1.483271
6 SHIMIYA N, FUJII A, HORIGUCHI H, et al Suppression of cavitation instabilities in an inducer by J groove[J]. Journal of Fluids Engineering, 2008, 130: 021302
doi: 10.1115/1.2829582
7 KIM J H, ISHZAKA K, WATANABE S, et al Cavitation surge suppression of pump inducer with axi-asymmetrical inlet plate[J]. International Journal of Fluid Machinery and System, 2010, 3 (1): 50- 57
doi: 10.5293/IJFMS.2010.3.1.050
8 朱兵. 缝隙引流叶片提高低比转速离心泵性能的机理研究 [D]. 上海: 上海大学, 2016.
ZHU Bing. Research on the mechanism of performance improving in low specific speed centrifugal pump with gap drainage blades [D]. Shanghai: Shanghai University, 2016.
9 王洋, 谢山峰, 王维军, 等 开缝叶片低比转数离心泵空化性能的数值模拟[J]. 排灌机械工程学报, 2016, 34 (3): 210- 215
WANG Yang, XIE Shan-feng, WANG Wei-jun, et al Numerical simulation of cavitation performance of low specific speed centrifugal pump with slotted blades[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34 (3): 210- 215
doi: 10.3969/j.issn.1674-8530.15.0114
10 赵伟国, 赵国寿, 咸丽霞, 等 离心泵叶片表面布置障碍物抑制空化的数值模拟与实验[J]. 农业机械学报, 2017, 48 (9): 111- 120
ZHAO Wei-guo, ZHAO Guo-shou, XIAN Li-xia, et al Effect of surface-fitted obstacle in centrifugal pump on cavitation suppression[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (9): 111- 120
doi: 10.6041/j.issn.1000-1298.2017.09.014
11 张睿. 轴流泵失速和空化流动特性及其性能改善研究[D]. 上海: 上海大学, 2014.
ZHANG Rui. Research on the stall and cavitation flow characteristics and the performance improvement of axial-flow pump [D]. Shanghai: Shanghai University, 2014.
12 CHE B X, CAO L L, CHU N, et al Effect of obstacle position on attached cavitation control through response surface methodology[J]. Journal of Mechanical Science and Technology, 2019, 33 (9): 4265- 4279
doi: 10.1007/s12206-019-0823-y
13 MENTER F R Two-Equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32 (8): 269- 289
[1] 孙朋朋, 赵祥模, 徐志刚, 闵海根. 基于3D激光雷达城市道路边界鲁棒检测算法[J]. 浙江大学学报(工学版), 2018, 52(3): 504-514.
[2] 赵亮, 吕亚飞, 贺治国, 林颖典, 胡鹏, 林挺. 分层水体和障碍物对斜坡异重流运动特性的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2466-2473.
[3] 张德胜, 石磊, 陈健, 潘强, 施卫东. 轴流泵叶轮叶顶区空化特性试验分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1585-1592.
[4] 曹腾,项志宇,刘济林. 基于视差空间V-截距的障碍物检测[J]. 浙江大学学报(工学版), 2015, 49(3): 409-414.
[5] 王盛,项志宇. 基于多谱融合的植被环境中障碍物检测[J]. 浙江大学学报(工学版), 2015, 49(11): 2223-2229.
[6] 程健, 项志宇, 于海滨, 刘济林. 城市复杂环境下基于三维激光雷达实时车辆检测[J]. 浙江大学学报(工学版), 2014, 48(12): 2101-2106.
[7] 杨飞,朱株,龚小谨,刘济林. 基于三维激光雷达的动态障碍实时检测与跟踪[J]. J4, 2012, 46(9): 1565-1571.
[8] 姚拓中 项志宇 刘济林. 基于图像多特征融合的野外水体障碍物检测[J]. , 2009, 43(4): 605-609.
[9] 杜歆 周围 朱云芳 刘济林. 基于单目视觉的障碍物检测[J]. J4, 2008, 42(6): 913-917.
[10] 朱云芳 王贻术 杜歆. 静态环境中基于光流的障碍物检测[J]. J4, 2008, 42(6): 923-926.
[11] 郑津洋 刘延雷 徐平 赵永志 陈虹港 别海燕. 障碍物对高压储氢罐泄漏扩散影响的数值模拟[J]. J4, 2008, 42(12): 2177-2180.