Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (6): 1095-1105    DOI: 10.3785/j.issn.1008-973X.2020.06.006
土木工程     
基于非对称模型的碟簧隔震单自由度体系地震响应
王维1,2(),高尚信1,李爱群2,3,*(),王星星1
1. 江苏科技大学 土木工程与建筑学院,江苏 镇江 212000
2. 东南大学 土木工程学院,江苏 南京 210096
3. 北京建筑大学 北京未来城市设计高精尖创新中心,北京 100044
Seismic responses of disc spring isolated-single degree of freedom system based on asymmetric model
Wei WANG1,2(),Shang-xin GAO1,Ai-qun LI2,3,*(),Xing-xing WANG1
1. School of Civil Engineering and Architecture, Jiangsu University of Science and Technology, Zhenjiang 212000, China
2. School of Civil Engineering, Southeast University, Nanjing 210096, China
3. Beijing University of Civil Engineering and Architecture, Beijing Advanced Innovation Center for Future Urban Design, Beijing 100044, China
 全文: PDF(2275 KB)   HTML
摘要:

基于碟簧竖向隔震(DSVI)支座的非对称受力特征,提出非对称恢复力模型,并利用试验结果对该恢复力模型进行验证;基于该非对称恢复力模型,建立碟簧竖向隔震单自由度(DSVI-SDOF)体系的非线性时程分析程序. 在此基础上,对典型DSVI-SDOF体系进行非线性动力时程分析,研究非对称恢复力模型对其地震响应分析结果的影响. 研究结果表明,非对称恢复力模型能够准确表征DSVI支座的力学行为,从而使得非线性时程分析程序能够较为准确地模拟DSVI-SDOF体系的地震响应. 随着地震动峰值加速度的增加,DSVI-SDOF体系的峰值加速度、峰值地震力的隔震率先增大后减小,当地震动峰值加速度为400 cm/s2时,DSVI-SDOF体系的隔震效果达到最优,峰值加速度和峰值地震力的隔震率均在20%~50%.

关键词: 碟簧竖向隔震(DSVI)支座非对称恢复力模型地震响应竖向隔震单自由度(SDOF)体系    
Abstract:

An asymmetry restoring force model was proposed based on the asymmetric force characteristics of disc spring vertical isolation (DSVI) bearing, and it was validated by the test results. Then, based on the asymmetric restoring force model, nonlinear time-history analysis program for the disc spring vertical isolation-single degree of freedom (DSVI-SDOF) system was established. Furthermore, the nonlinear dynamic time history analysis of a typical DSVI-SDOF system was carried out to study influence of the asymmetric restoring force model on the structural seismic responses. Results show that the asymmetric model can accurately characterize the mechanical behavior of the DSVI bearing; hence, the seismic responses of the DSVI-SDOF system can be simulated accurately by the nonlinear time-history analysis program. With increase of peak ground acceleration, the isolation ratios of maximum acceleration and maximum seismic force of the DSVI-SDOF system increase first and then decrease. When peak ground acceleration is 400 cm/s2, the isolation effect of the DSVI-SDOF system is optimal, and the isolation ratios of both maximum accelerations and maximum forces are between 20%?50%.

Key words: disc spring vertical isolation (DSVI) bearing    asymmetric restoring force model    seismic responses    vertical isolation    single degree of freedom (SDOF) system
收稿日期: 2019-05-18 出版日期: 2020-07-06
CLC:  TU 352.12  
基金资助: 国家重点研发计划资助项目(2017YFC0703600);国家自然科学基金资助项目(51708258,51708257);江苏省高校自然科学基金面上资助项目(17KJB560002)
通讯作者: 李爱群     E-mail: wangweidimias@sina.com;aiqunli@seu.edu.cn
作者简介: 王维(1985—),男,博士,从事结构减隔震研究. orcid.org/0000-0002-6826-0613. E-mail: wangweidimias@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王维
高尚信
李爱群
王星星

引用本文:

王维,高尚信,李爱群,王星星. 基于非对称模型的碟簧隔震单自由度体系地震响应[J]. 浙江大学学报(工学版), 2020, 54(6): 1095-1105.

Wei WANG,Shang-xin GAO,Ai-qun LI,Xing-xing WANG. Seismic responses of disc spring isolated-single degree of freedom system based on asymmetric model. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1095-1105.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.06.006        http://www.zjujournals.com/eng/CN/Y2020/V54/I6/1095

图 1  碟簧竖向隔震(DSVI)支座
图 2  黏弹性模型示意图
图 3  双线性模型示意图
图 4  非对称模型示意图
图 5  单片碟簧的尺寸示意图
图 6  荷载作用下模拟值和试验值的比较
图 7  非隔震框架结构及其简化模型
图 8  隔震框架结构及其简化模型
图 9  地震动的加速度反应谱
图 10  碟簧竖向隔震单自由度(DSVI-SDOF)体系峰值位移对比
图 11  DSVI-SDOF体系峰值位移的相对误差
图 12  DSVI-SDOF体系峰值位移的隔震率
图 13  DSVI-SDOF体系峰值加速度对比
图 14  DSVI-SDOF体系峰值加速度的相对误差
图 15  DSVI-SDOF体系峰值加速度的隔震率
图 16  DSVI-SDOF体系峰值力对比
图 17  DSVI-SDOF体系峰值力的相对误差
图 18  DSVI-SDOF体系峰值力的隔震率
图 19  碟簧竖向隔震简化(DSVI-S)支座力-位移滞回曲线对比
图 20  DSVI-S支座消耗能量的分布
图 21  DSVI-S支座消耗能量的相对误差
图 22  DSVI-SDOF体系力时程的对比
1 ZHENG E, JIA F, ZHOU X Energy-based method for nonlinear characteristics analysis of Belleville springs[J]. Thin-Walled Structures, 2014, 79 (2): 52- 61
2 张玉敏, 苏幼坡, 苏经宇 碟形弹簧竖向减震装置的性能试验研究[J]. 重庆建筑大学学报, 2008, 30 (6): 51- 53
ZHANG Yu-min, SU You-po, SU Jing-yu Mechanical performance of a vertical seismic isolation system employing a dish spring[J]. Journal of Chongqing Jianzhu University, 2008, 30 (6): 51- 53
3 杨维国, 王亚, 安鹏, 等 基于某博物馆的新型三维隔振装置作用性能研究[J]. 东南大学学报: 自然科学版, 2018, 48 (6): 1050- 1058
YANG Wei-guo, WANG Ya, AN Peng, et al Application performance study of new three-dimensional vibration isolation device based on one museum structure[J]. Journal of Southeast University: Natural Science Edition, 2018, 48 (6): 1050- 1058
4 赵人达, 贾毅, 占玉林, 等 强震区多跨长联连续梁桥减隔震设计[J]. 浙江大学学报: 工学版, 2018, 39 (5): 99- 105
ZHAO Ren-da, JIA Yi, ZHAN Yu-lin, et al Seismic mitigation and isolation design for multi-span and long-unit continuous girder bridge inmeizoseismal area[J]. Journal of Zhejiang University: Engineering Science, 2018, 39 (5): 99- 105
5 蒋璐, 李向民, 张富文, 等 设置碟形弹簧的框架-摇摆墙结构抗震性能试验研究[J]. 建筑结构学报, 2019, 40 (8): 61- 70
JIANG Lu, LI Xiang-min, ZHANG Fu-wen, et al Experimental investigation on seismic performance of frame-rocking wall structures using disc springs[J]. Journal of Building Structures, 2019, 40 (8): 61- 70
6 赵亚敏, 苏经宇, 周锡元, 等 碟形弹簧竖向隔震结构振动台试验及数值模拟研究[J]. 建筑结构学报, 2008, 29 (6): 99- 106
ZHAO Ya-min, SU Jing-yu, ZHOU Xi-yuan, et al Shaking table test and numerical analysis of vertical-isolated building model with combined disk spring bearing[J]. Journal of Building Structures, 2008, 29 (6): 99- 106
doi: 10.3321/j.issn:1000-6869.2008.06.014
7 王维, 李爱群, 周德恒, 等 新型三维多功能隔振支座设计及其隔振分析[J]. 东南大学学报: 自然科学版, 2014, 44 (4): 787- 792
WANG Wei, LI Ai-qun, ZHOU De-heng, et al Design of novel three dimension multifunctional isolation bearing and its isolation behavior analysis[J]. Journal of Southeast University: Natural Science Edition, 2014, 44 (4): 787- 792
8 XU L, FAN X, LI Z Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs[J]. Earthquake Engineering and Structural Dynamics, 2017, 46: 1065- 1080
doi: 10.1002/eqe.2844
9 XU L, FAN X, LI Z Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127: 49- 61
doi: 10.1016/j.engstruct.2016.08.043
10 JIA F, XU F Combined vibration isolator of disc springs for closed high-speed precision press: design and experiments[J]. Transactions of Canadian Society for Mechanical Engineering, 2014, 38 (4): 465- 585
doi: 10.1139/tcsme-2014-0031
11 JIA F, ZHANG F Mechanical properties of disc-spring vibration isolators based on boundary friction[J]. Journal of Southeast University, 2014, 30 (1): 39- 44
12 OZAKI S, TSUDA K, TOMINAGA J Analyses of static and dynamic behavior of coned disk springs: effects of friction boundaries[J]. Thin-Walled Structures, 2012, 59 (4): 132- 143
13 CURTI G, MONTANINI R On the influence of friction in the calculation of conical disk springs[J]. Journal of Mechanical Design, 1999, 121 (4): 217- 227
14 KARAKAYA S Investigation of hybrid and different cross-section composite disc springs using finite element method[J]. Transactions of Canadian Society for Mechanical Engineering, 2012, 36 (4): 399- 412
doi: 10.1139/tcsme-2012-0028
15 邢佶慧, 黄河, 张家云, 等 碟形弹簧力学性能研究[J]. 振动与冲击, 2015, 34 (22): 167- 172
XING Ji-hui, HUANG He, ZHANG Jia-yun, et al Mechanical properties of disc springs[J]. Journal of Vibration and shock, 2015, 34 (22): 167- 172
16 中国国家标准化管理委员会. 碟形弹簧: GB/T 1972-2005 [S]. 北京: 中国标准出版社, 2005.
17 German Institute for Standardization. Dimensions and quality of conical disc springs: DIN 2093-2013 [S]. Berlin: Beuth Press, 2013.
18 王维, 李爱群, 秦焰宏, 等 碟形弹簧复合隔震支座力学性能试验与数值模拟研究[J]. 建筑结构学报, 2018, 39 (5): 99- 105
WANG Wei, LI Ai-qun, QIN Yan-hong, et al Experiment and numerical simulation on mechanical performance of disc spring compound isolation bearings[J]. Journal of Building Structures, 2018, 39 (5): 99- 105
19 CHANG T S, SINGH M P Mechanical model parameters for viscoelastic dampers[J]. Journal of Engineering Mechanics, 2009, 135 (6): 581- 584
doi: 10.1061/(ASCE)0733-9399(2009)135:6(581)
[1] 席仁强,杜修力,王丕光,许成顺,许坤. 单桩式海上风力机整体化地震反应[J]. 浙江大学学报(工学版), 2021, 55(4): 757-766.
[2] 徐军, 李英民, 杨旭尧, 胡晓平. 多点激励下高烈度区接触网系统地震响应分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1575-1582.
[3] 黄博,李玲,凌道盛,陈星耀. 附加衰减模式及其对场地地震响应影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1170-1179.
[4] 姚霄雯, 蒋建群. 地震动强度指标与高拱坝响应的相关性[J]. J4, 2014, 48(2): 254-261.
[5] 章永乐,蒋建群,刘加进,王振宇. 框架结构地震损伤评估与抗震设计[J]. J4, 2011, 45(7): 1294-1300.
[6] 吴玉华, 楼文娟. 水平随机地震激励下弹性圆拱的半解析法[J]. J4, 2010, 44(1): 156-159+165.
[7] 谢旭 吴善幸. 考虑支座破坏影响的防止落梁装置地震响应[J]. J4, 2006, 40(12): 2180-2185.
[8] 罗尧治 王荣. 索穹顶结构动力特性及多维多点抗震性能研究[J]. J4, 2005, 39(1): 39-45.