能源与动力工程 |
|
|
|
|
亲-疏水两层结构表面强化蒸汽冷凝传热 |
孔庆盼(),纪献兵*(),周儒鸿,尤天伢,徐进良 |
华北电力大学 低品位能源多相流与传热北京市重点实验室,北京 102206 |
|
Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface |
Qing-pan KONG(),Xian-bing JI*(),Ru-hong ZHOU,Tian-ya YOU,Jin-liang XU |
Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy, North China Electric Power University, Beijing 102206, China |
引用本文:
孔庆盼,纪献兵,周儒鸿,尤天伢,徐进良. 亲-疏水两层结构表面强化蒸汽冷凝传热[J]. 浙江大学学报(工学版), 2020, 54(5): 1022-1028.
Qing-pan KONG,Xian-bing JI,Ru-hong ZHOU,Tian-ya YOU,Jin-liang XU. Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1022-1028.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.021
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I5/1022
|
1 |
BARAKO M T, GAMBIN V, TICE J Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications[J]. Nanotechnology, 2018, 29 (15): 154003
doi: 10.1088/1361-6528/aaabe1
|
2 |
宿吉强, 范黎, 高力 安全壳冷却系统蒸汽冷凝传热研究综述[J]. 原子能科学技术, 2016, 50 (11): 1956- 1966 SU Ji-qiang, FAN Li, GAO Li Review of steam condensation heat transfer under containment cooling system condition[J]. Atomic Energy Science and Technology, 2016, 50 (11): 1956- 1966
|
3 |
SNUSTAD I, R?E I T, BRUNSVOLD A, et al A review on wetting and water condensation-Perspectives for CO2 condensation [J]. Advances in Colloid and Interface Science, 2018, 256: 291- 304
doi: 10.1016/j.cis.2018.03.008
|
4 |
齐隽楠, 吴嘉峰, 陈亚平 疏水表面蒸汽滴状冷凝传热实验分析[J]. 制冷技术, 2015, 35 (3): 11- 14 QI Jun-nan, WU Jia-feng, CHEN Ya-ping Experimental analysis on dropwise condensation of steam onhydrophobic surfaces[J]. Chinese Journal of Refrigeration Technology, 2015, 35 (3): 11- 14
doi: 10.3969/j.issn.2095-4468.2015.03.103
|
5 |
LU M C, LIN C C, LO C W, et al Superhydrophobic Si nanowires for enhanced condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 111: 614- 623
doi: 10.1016/j.ijheatmasstransfer.2017.04.021
|
6 |
LAN Z, MA X H, WANG S F, et al Effects of surface free energy and nanostructures on dropwise condensation[J]. Chemical Engineering Journal, 2010, 156 (3): 546- 552
doi: 10.1016/j.cej.2009.04.007
|
7 |
WIER K A, MCCARTHY T J Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant[J]. Langmuir, 2006, 22 (6): 2433- 2436
doi: 10.1021/la0525877
|
8 |
JI X B, ZHOU D D, DAI C, et al Dropwise condensation heat transfer on superhydrophilic-hydrophobic network hybrid surface[J]. International Journal of Heat and Mass Transfer, 2019, 132: 52- 67
doi: 10.1016/j.ijheatmasstransfer.2018.11.139
|
9 |
ALWAZZAN M, EGAB K, PENG B L, et al Condensation on hybrid-patterned copper tubes (I): characterization of condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112: 991- 1004
doi: 10.1016/j.ijheatmasstransfer.2017.05.039
|
10 |
HU H W, TANG G H, NIU D Experimental investigation of condensation heat transfer on hybrid wettability finned tube with large amount of noncondensable gas[J]. International Journal of Heat and Mass Transfer, 2015, 85: 513- 523
doi: 10.1016/j.ijheatmasstransfer.2015.02.006
|
11 |
彭本利, 马学虎, 兰忠, 等 组合表面调控液滴特性强化蒸汽冷凝传热[J]. 化工学报, 2015, 66 (10): 3826- 3833 PENG Ben-li, MA Xue-hu, LAN Zhong, et al Steam condensation heat transfer enhancement through droplet properties manipulation with hybrid surfaces[J]. CIESC Journal, 2015, 66 (10): 3826- 3833
|
12 |
KOCH K, BARTHLOTT W Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367 (1893): 1487- 1509
doi: 10.1098/rsta.2009.0022
|
13 |
OTHMER D F The condensation of steam[J]. Industrial and Engineering Chemistry, 1929, 21 (6): 576- 583
doi: 10.1021/ie50234a018
|
14 |
HUANG D J, LEU T S Condensation heat transfer enhancement by surface modification on a monolithic copper heat sink[J]. Applied Thermal Engineering, 2015, 75: 908- 917
doi: 10.1016/j.applthermaleng.2014.10.019
|
15 |
WENZEL R N Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28 (8): 988- 994
doi: 10.1021/ie50320a024
|
16 |
李翔, 齐宝金, 魏进家 差异化疏水铜表面的冷凝传热实验研究[J]. 工程热物理学报, 2018, 39 (2): 428- 433 LI Xiang, QI Bao-jin, WEI Jin-jia Experimental study of condensation heat transfer on the differentiated hydrophobic copper surfaces[J]. Journal of Engineering Thermophysics, 2018, 39 (2): 428- 433
|
17 |
SONG C, ZHENG Y Wetting-controlled strategies: from theories to bio-inspiration[J]. Journal of Colloid and Interface Science, 2014, 427: 2- 14
doi: 10.1016/j.jcis.2013.10.067
|
18 |
XUE Y, WANG T, SHI W, et al Water collection abilities of green bristlegrass bristle[J]. RSC Advances, 2014, 4 (77): 40837- 40840
doi: 10.1039/C4RA06661H
|
19 |
HAIDARA H, LEBEAU B, GRZELAKOWSKI C, et al Competitive spreading versus imbibition of polymer liquid drops in nanoporous membranes: scaling behavior with viscosity[J]. Langmuir, 2008, 24 (8): 4209- 4214
doi: 10.1021/la703538g
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|