Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 1029-1038    DOI: 10.3785/j.issn.1008-973X.2020.05.022
航空航天技术     
基于模糊逻辑控制的卫星功率控制方法
刘鹏程(),徐九凌,黄家骏,张朝杰*()
浙江大学 微小卫星研究中心,浙江 杭州 310027
Satellite power control method based on fuzzy logic control
Peng-cheng LIU(),Jiu-ling XU,Jia-jun HUANG,Chao-jie ZHANG*()
Micro-satellite Research Center, Zhejiang University, Hangzhou 310027, China
 全文: PDF(12592 KB)   HTML
摘要:

卫星通信系统中码分多址的接入方式会引起远近效应问题,针对此问题提出基于模糊逻辑控制的功率控制方法.在内环功率控制中控制各从星的发射功率,使各从星到达主星的接收功率平衡;在外环功率控制中,模糊逻辑控制器通过动态调节目标功率为最佳的方式,提高总体测距精度. 在Matlab仿真中将该功率控制方法与传统的固定步长功率控制方法进行对比,仿真结果表明,2种方法均能使各从星到达主星的功率趋于相等,并追踪最小的从星功率,但是基于模糊逻辑控制的功率控制方法的响应速度更快. 在测控应答机上,搭建1颗主星与3颗从星之间通信的实验平台. 实验结果表明,使用功率控制后,卫星编队的总体测距精度从60 cm提高到20 cm,各从星到达主星的功率平衡.

关键词: 卫星编队卫星通信系统功率控制模糊逻辑控制测距精度    
Abstract:

A power control method based on fuzzy logic control was proposed, aming at the problem that the access method of code division multiple access in the satellite communication system may cause problems such as near-far effect. The transmission power of each slave star was controlled in the inner loop power control, so that the received power of each slave star to the master star was balanced. The fuzzy logic controller improved the overall ranging accuracy by dynamically adjusting the target power to the best in the outer loop power control. The proposed power control method was compared with the traditional fixed step power control method in the simulation of Matlab. Simulation results show that both methods can make the power from each slave star to the master star equal, and track the minimum slave power. However, the power control method based on fuzzy logic control has faster response. An experiment platform for communication between a master star and three slave stars was established on the monitoring and control transponder. Experimental results showed that after power control, the overall ranging accuracy of satellite formation was increased from 60 cm to 20 cm, and the power from each slave star to the master star was balanced.

Key words: satellite formation    satellite communication system    power control    fuzzy logic control    ranging accuracy
收稿日期: 2019-04-23 出版日期: 2020-05-05
CLC:  V 11  
基金资助: 国家杰出青年基金资助项目(61525403)
通讯作者: 张朝杰     E-mail: 21824029@zju.edu.cn;zhangcj@zju.edu.cn
作者简介: 刘鹏程(1996—),女,硕士生,从事卫星通信研究. orcid.org/0000-0002-2170-0730. E-mail: 21824029@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘鹏程
徐九凌
黄家骏
张朝杰

引用本文:

刘鹏程,徐九凌,黄家骏,张朝杰. 基于模糊逻辑控制的卫星功率控制方法[J]. 浙江大学学报(工学版), 2020, 54(5): 1029-1038.

Peng-cheng LIU,Jiu-ling XU,Jia-jun HUANG,Chao-jie ZHANG. Satellite power control method based on fuzzy logic control. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1029-1038.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.022        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/1029

图 1  从星A、B和主星之间的关系
图 2  闭环功率控制的模型图
图 3  传统固定步长功率控制算法的模型图
图 4  输入变量与输出变量的隶属函数
Mfour ΔPtar
RNmin=NE(负) RNmin=NZ(负零) RNmin=PZ(正零) RNmin=PO(正)
S(小) NS(负较小) ZE(近似零) ZE(近似零) PS(正较小)
M(中) NS(负较小) ZE(近似零) ZE(近似零) PS(正较小)
L(大) NL(负较大) NS(负较小) PS(正较小) PL(正较大)
表 1  模糊逻辑控制规则
图 5  输入变量与输出变量的模糊控制曲面
卫星 T/s E I/(o) AN/(o) N/(o) t/s
A 24 000 0.100 45 0.201 5 18.000 0 0 22.56
B 24 000 0.100 20 0.202 0 18.061 5 0 17.35
C 24 000 0.100 00 0.200 0 18.000 0 0 22.60
D 24 000 0.100 00 0.200 0 18.000 0 0 21.00
表 2  卫星轨道参数表
图 6  未功率控制时3颗从星的功率曲线
图 7  基于模糊逻辑控制方法的功率控制仿真曲线
图 8  传统固定步长的功率控制仿真
图 9  传统固定步长的功率控制方法与基于模糊逻辑控制的功率控制方法的功率控制偏差曲线
图 10  基于模糊逻辑控制的功率控制实验验证平台
图 11  无功率控制时的测距精度
图 12  基于模糊逻辑控制的功率控制方法的测距精度图
图 13  3个通道的接收功率变化图
1 王有亮. 卫星编队飞行相对轨迹优化与控制[D]. 合肥: 中国科学院大学, 2018.
WANG You-liang. Relative trajectory optimization and control for satellite formation flying [D]. Hefei: University of Chinese Academy of Sciences, 2018.
2 吕文渊 feiCDMA系统中的一种自适应功率控制算法[J]. 太原学院学报: 自然科学版, 2016, 34 (2): 11- 13
LV Wen-yuan An adaptive power control algorithm in CDMA systems[J]. Journal of Taiyuan Univisity: Natural Science Edition, 2016, 34 (2): 11- 13
3 李晓菲. 无线通信网络自适应功率控制的算法研究[D]. 北京: 北方工业大学, 2013.
LI Xiao-fei. Research on adaptive power control in wireless communication network [D]. Beijing: North China University of Technology, 2013.
4 ARIVAVISITAKUL S. SIR-based power control in a CDMA system [C]// IEEE Global Telecommunications Conference. Orlando: IEEE, 1992: 868-873.
5 张海波, 李方伟, 刘开健 CDMA系统中的闭环功率控制方法[J]. 硅谷, 2008, (22): 130- 130
ZHANG Hai-bo, LI Fang-wei, LIU Kai-jian Closed loop power control method in CDMA systems[J]. Silicon Valley, 2008, (22): 130- 130
6 何柳青, 曹清华 CDMA系统中基于SIR的自适应变步长闭环功率控制[J]. 甘肃科学学报, 2006, 18 (2): 73- 76
HE Liu-qing, CAO Qing-hua An adaptive step-size closed-loop power control based on SIR-measurement in CDMA systems[J]. Journal of Gansu Sciences, 2006, 18 (2): 73- 76
doi: 10.3969/j.issn.1004-0366.2006.02.021
7 赵琳, 刘剑飞, 于晓然, 等 CDMA系统中改进的功率控制算法[J]. 北京邮电大学学报, 2007, 30 (3): 96- 99
ZHAO Lin, LIU Jian-fei, YU Xiao-ran, et al An adaptive power control algorithm in CDMA systems[J]. Journal of Beijing University of Posts and Telecommunications, 2007, 30 (3): 96- 99
doi: 10.3969/j.issn.1007-5321.2007.03.023
8 CAMPOS-DELGADO D U, LUNA-RIVERA M. Distributed power control in quasi-synchronous multi-carrier CDMA systems [C]// American Control Conference. Montreal: IEEE, 2012: 466-471.
9 DONMEZ N. A game-theoretic approach to efficient power control in CDMA data networks [C]// International Symposium on Innovations in Intelligent Systems and Applications. Istanbul: IEEE. 2011: 248-252.
10 MAITY S P, HATI S An adaptive SIC technique in DS-CDMA using neural network[J]. Procedia Engineering, 2012, 30: 1056- 1063
doi: 10.1016/j.proeng.2012.01.963
11 XU H, ZHOU X, CHEN Y Automatic uplink resource management in mobile cellular networks: a utility-based cooperative power control strategy[J]. International Journal of Wireless Information Networks, 2013, 20 (4): 365- 374
doi: 10.1007/s10776-013-0212-x
12 CHANG P R, WANG B C Adaptive fuzzy power control for CDMA mobile radio systems[J]. IEEE Transactions on Vehicular Technology, 1996, 45 (2): 225- 236
doi: 10.1109/25.492846
13 SINGH K, DHILLON K S, SINGH K. Fuzzy logic based closed loop adaptive power control for minimization of near-far interference in CDMA systems [C]// International Conference on Recent Advances in Engineering and Computational Sciences. Chandigarh: IEEE, 2015.
14 李永波 一种提高应答机伪码非相干测距精度的方法[J]. 电讯技术, 2009, 49 (3): 66- 69
LI Yong-bo One method for improving pseudocode noncoherent ranging precision in transponder[J]. Telecommunication Engineering, 2009, 49 (3): 66- 69
doi: 10.3969/j.issn.1001-893X.2009.03.014
15 BETZ J W, KOLODZIEJSKI K R Generalized theory of code tracking with an early-late discriminator Part II: noncoherent processing and numerical results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45 (4): 1557- 1564
16 李国勇, 杨丽娟. 神经模糊预测控制及其matlab实现: 第4版[M]. 北京: 电子工业出版社, 2018.
17 张志文, 张硕, 李天宇 基于模糊逻辑并联混合动力汽车控制策略研究[J]. 中北大学学报: 自然科学版, 2018, 39 (6): 677- 686
ZHANG Zhi-wen, ZHANG Shuo, LI Tian-yu Research on control strategy of parallel hybrid electric vehicle based on fuzzy logic[J]. Journal of North-University of China: Natural Science Edition, 2018, 39 (6): 677- 686
18 申其豪, 廖华, 马逊, 等 基于自适应模糊逻辑PID控制最大功率点跟踪的仿真研究[J]. 云南师范大学学报: 自然科学版, 2018, 38 (5): 7- 13
SHEN Qi-hao, LIAO Hua, MA Xun, et al Simulation research on maximum power point tracking based on adaptive fuzzy logic PID control[J]. Journal of Yunnan Normal university: Natural Science Edition, 2018, 38 (5): 7- 13
[1] 曾凌霄,刘宏伟,李伟,林勇刚,顾亚京. 基于变桨系统的功率与载荷双目标协同控制[J]. 浙江大学学报(工学版), 2021, 55(4): 750-756.
[2] 马子昂,项志宇. 光流测距全向相机的标定与三维重构[J]. 浙江大学学报(工学版), 2015, 49(9): 1651-1657.
[3] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[4] 陈友荣, 俞立, 董齐芬, 洪榛. 基于近邻算法的无线传感器网络功率控制[J]. J4, 2010, 44(7): 1321-1326.
[5] 陈勋, 张朝阳, 罗海燕. 无线Mesh网络中功率控制、信道分配和调度的联合优化[J]. J4, 2009, 43(8): 1406-1411.
[6] 刘丰威 杨胜天 陈雁 仇佩亮. 一维无线ad hoc网络的连通性[J]. J4, 2007, 41(8): 1335-1340.