Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
车用空调冷凝器性能多目标优化方法
过海1,倪益华2,王进1,陆国栋1
1.浙江大学 机械工程学系,浙江 杭州 310027;2.浙江农林大学 工程学院,浙江 杭州 311300
Multi-objective performance optimization method of automotive air-conditioning condenser
GUO Hai1, NI Yi-hua2, WANG Jin1, LU Guo-dong1
1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; 2. School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
 全文: PDF(870 KB)   HTML
摘要:

针对车用空调平行流冷凝器的性能优化问题,将冷凝器划分为3个相区,分别为过热区、两相区和过冷区.通过划分微元并通过比焓或干度逐一判断所属相区并进行计算的方式,基于ε-NTU法建立结构参数与性能参数之间的数学关系,通过运行实验验证了该换热计算模型.利用多目标遗传算法(MOGA)分别获得双目标优化与多目标优化的Pareto最优解集,比较了两者的优劣.结果表明,采用MOGA能够解决车用空调平行流冷凝器性能优化问题,相对双目标优化具有更好的优化效果.通过对优化点进行分析,分别获得最佳综合性能、最佳运行性能、小型轻量化3种优化方案,其中综合性能优化方案提升换热效率4.7%、降低压降4.5%,体积和质量分别减小10.5%和6.4%.

Abstract:

Aiming at the performance optimization problem of an automotive air-conditioning parallel flow condenser, the condenser was divided into three regions which were respectively overheated, two-phase and sub-cooled. The mathematic relationship between the structure and the performance parameters was built based on the ε-NTU method by dividing flow path into micro units and calculating one by one after the region type was judged by enthalpy or dryness fraction, and the heat exchanging calculation model was verified by running experiments. The Pareto optimal solutions of double-objective and multi-objective optimizations were obtained by the multi-objective genetic algorithm (MOGA) and were compared. Results show that the MOGA can solve the performance optimization problem of an automotive air-conditioning parallel flow condenser, and the optimization effect of multi-objective optimization is better than that of double-objective. Through analysis of the optimizing points, three optimizing plans which respectively promoted the overall performance, the operating performance, and decreased the weight with volume were obtained. The overall optimizing plan increased heat transfer efficiency by 4.7% and decreased pressure drop by 4.5%, volume by 10.5% and mass by 6.4%.

出版日期: 2018-06-06
:  TK 124  
基金资助:

高等学校博士学科点专项科研基金资助项目(20120101130003);国家自然科学基金资助项目(51175466)

通讯作者: 王进,男,副教授     E-mail: zjuwj@zju.edu.cn
作者简介: 过海(1984-),男,博士生,从事机械设计及传热学的研究. E-mail: harryg@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.01.021.

GUO Hai, NI Yi-hua, WANG Jin, LU Guo-dong. Multi-objective performance optimization method of automotive air-conditioning condenser. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.01.021.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.01.021        http://www.zjujournals.com/eng/CN/Y2015/V49/I1/142

[1] RAO R V, PATEL V. Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm [J]. Applied Mathematical Modeling, 2013, 37(3): 1147-1162.
[2] KOTCIOGLU I, CANSIZ A, KHALAJI M N. Experimental investigation for optimization of design parameters in a rectangular duct with plate-fins heat exchanger by Taguchi method [J]. Applied Thermal Engineering, 2013, 50(1): 604-613.
[3] SANAYE S, HAJABDOLLAHI H. Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm [J]. Applied Energy, 2010, 87(6): 1893-1902.
[4] 郑静,阎昌琪,王建军. 冷凝器重量优化设计[J]. 核动力工程, 2011(03): 134-138.
ZHENG Jing, YAN Chang-qi, WANG Jian-jun. Optimal design of condenser weight [J]. Nuclear Power Engineering, 2011(03): 134-138.
[5] 郑静,阎昌琪,王建军. 核动力装置冷凝器体积的优化设计[J]. 原子能科学技术, 2011(01): 60-65.
ZHENG Jing, YAN Chang-qi, WANG Jian-jun. Optimal design of condenser volume in nuclear power plant [J]. Atomic Energy Science and Technology, 2011(01): 60-65.
[6] 陈家星,余敏,姚俊豪. 基于遗传算法的列车空调冷凝器优化设计[J]. 上海理工大学学报, 2012(04): 399-403.
CHEN Jia-xing, YU Min, YAO Jun-hao. Optimal design of train air-conditioning condenser based on genetic algorithm [J]. Journal of University of Shanghai for Science and Technology, 2012(04): 399-403.
[7] KAYS W M, LONDON A L. Compact heat exchangers [M]. 3rd ed. New York: McGrawHill, 1984.
[8] KIM M H, BULLARD C W. Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers [J]. International Journal of Refrigeration-revue Du Fiord, 2002, 25(3): 390-400.
[9] DONG J Q, CHEN J P, CHEN Z J, et al. Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers [J]. Energy Conversion and Management, 2007, 48(5): 1506-1515.
[10] YANG C Y, WEBB R L. A predictive model for condensation in small hydraulic diameter tubes having axial micro-fins [J]. Journal of Heat Transfer-Transactions of the ASME, 1997, 119(4): 776-782.
[11] YANG C Y, WU J C, CHIEN H T, et al. Friction characteristics of water, R-134a, and air in small tubes [J]. Microscale Thermophysical Engineering, 2003, 7(4): 335-348.
[12] YANY C Y, WEBB R L. Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins [J]. International Journal of Heat and Mass Transfer, 1996, 39(4): 801-809.

[1] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[2] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[3] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[4] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[5] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[6] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[7] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[8] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[9] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[10] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[11] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[12] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[13] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[14] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[15] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.