Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
碳纳米管填料对相变储能式热沉性能的影响
肖玉麒, 甘曦梓, 曾轶, 范利武, 洪荣华, 俞自涛, 胡亚才
浙江大学 热工与动力系统研究所,浙江 杭州 310027
Effects of carbon nanotube fillers on performance of phase change energy storage-based heat sinks
XIAO Yu-qi, GAN Xi-zi, ZENG Yi, FAN Li-wu, HONG Rong-hua, YU Zi-tao, HU Ya-cai
Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1024 KB)   HTML
摘要:

为了评估纳米复合相变材料在相变储能式热管理技术中的应用潜力,采用实验方法研究碳纳米管填料对相变储能式电子器件热沉瞬态性能的影响.选用十六醇为基底相变材料,以多壁碳纳米管为填料制备了不同质量分数(0.3%、1%和3%)的纳米复合相变材料,对复合相变材料的关键热物性进行表征.在短时较高热流密度(高达7.0 W/cm2)加热条件下,比较热沉(分为有翅片和无翅片2种结构)的瞬态性能随纳米复合相变材料中碳纳米管质量分数的变化规律.实验结果表明,在添加了碳纳米管填料之后热沉的性能较采用纯十六醇的工况有所削弱.虽然加入碳纳米管后纳米复合相变材料的导热系数有所提升,但黏度的急剧增加极大地削弱了熔化过程中的自然对流效应,从而抵消了导热强化所带来的性能提升.

Abstract:

The effects of carbon nanotube fillers on the transient performance of thermal energy storage-based heat sinks for electronics were experimentally analyzed in order to assess the potential of nanocomposite phase change materials as applied to thermal energy storage-based thermal management technologies. 1-hexadocanol and multi-walled carbon nanotubes were chosen as the matrix phase change material and fillers, respectively, to form nanocomposite phase change materials at various mass fractions (0.3%, 1%, and 3%), whose key thermophysical properties were characterized. Under the intensive pulsed heat loads (up to 7.0 W/cm2), the transient performances of the heat sinks (finned or unfinned) were compared with respect to the mass fraction of carbon nanotubes in the nanocomposite phase change materials. Results show that the performance of the heat sink is slightly deteriorated upon adding carbon nanotubes into 1-hexadocanol as a result of greatly suppressed natural convection effects during melting, due to the dramatically increased viscosity. Then the performance improvement caused by enhanced heat conduction was offset, even if the thermal conductivity of the nanocomposite phase change materials was increased by the addition of carbon nanotubes.

出版日期: 2014-10-01
:  TK 124  
基金资助:

国家自然科学基金资助项目(51276159);中国博士后科学基金资助项目(2012M511362,2013T60589).

通讯作者: 范利武,男,副教授     E-mail: liwufan@zju.edu.cn
作者简介: 肖玉麒(1988—),男,硕士生,从事相变储能式热管理技术的研究. E-mail: 739129054@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

肖玉麒, 甘曦梓, 曾轶, 范利武, 洪荣华, 俞自涛, 胡亚才. 碳纳米管填料对相变储能式热沉性能的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.10.003.

XIAO Yu-qi, GAN Xi-zi, ZENG Yi, FAN Li-wu, HONG Rong-hua, YU Zi-tao, HU Ya-cai. Effects of carbon nanotube fillers on performance of phase change energy storage-based heat sinks. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.10.003.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.10.003        http://www.zjujournals.com/eng/CN/Y2014/V48/I10/1732

[1] 张芳,王小群,杜善义. 相变温控在电子设备上的应用研究[J]. 电子器件,2007,30(5): 1939-1942.

ZHANG Fang,WANG Xiao-qun,DU Shan-yi. Investigation on application of phase change thermal control in electronic devices [J]. Chinese Journal of Electron Devices, 2007,30(5): 1939-1942.
[2] 卢涛,姜培学.封装有相变材料的热沉结构对电子器件高温保护的传热分析[J].电子器件,2005,28(2): 235-238.
LU Tao,JIANG Pei-xue. Heat transfer of heat sink encapsulated with phase change material to prevent temperature from rising for electronic devices [J]. Chinese Journal of Electron Devices,2005,28(2): 235-238.
[3] KANDASAMY R,WANG X Q,MUJUMDAR A S. Application of phase change materials in thermal management of electronics [J]. Applied Thermal Engineering,2007,27(17/18): 2822-2832.
[4] KANDASAMY R,WANG X Q,MUJUMDAR A S. Transient cooling of electronics using phase change material (PCM)-based heat sinks [J]. Applied Thermal Engineering,2008,28(8/9): 1047-1057.
[5] 张仁元. 相变材料与相变储能技术[M]. 北京:科学出版社,2009.
[6] FAN L,KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review [J]. Renewable and Sustainable Energy Reviews,2011,15(1): 24-46.
[7] HONG S-T,HERLING D R. Open-cell aluminum foams filled with phase change materials as compact heat sinks [J]. Scripta Materialia,2006,55(10): 887-890.
[8] 吴斌,邢玉明. 填充泡沫复合相变材料的热控单元热性能研究[J]. 航空动力学报,2010,25(11): 2486-2492.
WU Bin,XING Yu-ming. Numerical investigation of thermal control unit with foam composite phase change material [J]. Journal of Aerospace Power,2010,25(11): 2486-2492.
[9] 王杰利,屈治国,李文强,等. 封装有现相变材料的金属泡沫复合热沉实验研究[J]. 工程热物理学报,2011,32(2): 295-298.
WANG Jie-li,QU Zhi-guo,LI Wen-qiang,et al. Experimental study of hybrid heat sink sintered with metal foams filled with phase change materials [J]. Journal of Engineering Thermophysics,2011,32(2): 295-298.
[10] 尹斌辉,高学农,丁静,等. 基于快速热响应相变材料的电子器件散热技术[J]. 华南理工大学学报:自然科学版,2007,35(7): 5256,104.
YIN Bin-hui,GAO Xue-nong,DING Jing,et al. Cooling technology of electronic device based on phase-change material with rapid thermal response [J]. Journal of South China University of Technology: Natural Science Edition,2007,35(7): 5256,104.
[11] YIN H,GAO X,DING J,et al. Experimental research on heat transfer mechanism of heat sink with composite phase change materials [J]. Energy Conversion and Management,2008,49(6): 1740-1746.
[12] YIN H,GAO X,DING J,et al. Thermal management of electronic components with thermal adaption composite material [J]. Applied Energy,2010,87(12): 3784-3791.
[13] 高学农,李得伦,孙滔,等. 石蜡/膨胀石墨复合相变材料控温电子热沉的性能[J]. 华南理工大学学报:自然科学版,2012,40(1): 712.
GAO Xue-nong,LI De-lun,SUN Tao,et al. Performance of temperature-controlled electronic heat sink with composite paraffin/expanded graphite phase change material [J]. Journal of South China University of Technology: Natural Science Edition,2012,40(1): 712.
[14] KHODADADI J M,FAN L,BABAEI H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review [J]. Renewable and Sustainable Energy Reviews,2013,24: 418-444.
[15] WEINSTEIN R D,KOPEC T C, FLEISCHER A S. The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics [J]. ASME Journal of Heat Transfer,2008,130(4): 042405.
[16] SHAIKH S,LAFDI K. A carbon nanotube-based composite for the thermal control of heat loads [J]. Carbon,2012,50(2): 542-550.
[17] 肖玉麒,范利武,洪荣华,等. 纳米填料对储能式散热器性能影响的数值研究[J]. 浙江大学学报:工学版,2013,47(9): 1644-1649.
XIAO Yu-qi,FAN Li-wu,HONG Rong-hua,et al. Numerical investigation of influence of nanofillers on performance of energy storage-based heat sink [J]. Journal of Zhejiang University: Engineering Science, 2013, 47(9): 1644-1649.
[18] FAN L W,XIAO Y Q,ZENG Y. Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM)-based heat sink [J]. International Journal of Thermal Sciences,2013,70: 114-126.
[19] YU Z,FANG X,FAN L,et al. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes [J]. Carbon,2013,53: 277-285.
[1] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[2] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[3] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[4] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[5] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[6] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[7] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[8] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[9] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[10] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[11] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[12] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[13] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[14] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[15] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.