Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (2): 322-331    DOI: 10.3785/j.issn.1008-973X.2026.02.010
计算机技术与控制工程     
低纹理环境下融合点线面特征的双目视觉SLAM算法
汪泽1(),饶蕾1,*(),范光宇1,陈年生1,程松林1,杨定裕2,姜楚乔1
1. 上海电机学院 电子信息学院,上海 201306
2. 浙江大学 区块链与数据安全全国重点实验室,浙江 杭州 310058
Stereo visual SLAM algorithm for fusing point-line-plane features in low texture environments
Ze WANG1(),Lei RAO1,*(),Guangyu FAN1,Niansheng CHEN1,Songlin CHENG1,Dingyu YANG2,Chuqiao JIANG1
1. School of Electronic Information Engineering, Shanghai Dianji University, Shanghai 201306, China
2. State Key Laboratory of Blockchain and Data Security, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2028 KB)   HTML
摘要:

针对机器人在低纹理场景下基于点特征的ORB-SLAM2存在定位精度低、轨迹漂移误差较大的问题,提出融合点线面特征的双目视觉SLAM算法. 在ORB-SLAM2中设计并引入改进的EDLines线特征提取算法,通过短线抑制和相似直线合并策略,降低计算时间并提高线特征提取的质量. 提出基于相交直线的平面特征提取方法,基于所提取面特征的几何约束优化位姿估计,减少重投影误差. 提出点线面特征的联合优化方法,融合多种特征的几何关系,减少由单一特征带来的误差累积. 在KITTI、EuRoC和UMA-VI数据集下测试所提算法的有效性. 实验结果表明,相较于ORB-SLAM2、点线特征SLAM以及点面特征SLAM算法,所提算法在定位精度与鲁棒性方面更优.

关键词: 低纹理环境视觉SLAM线特征面特征联合优化    
Abstract:

To address the issues of low positioning accuracy and significant trajectory drift errors in ORB-SLAM2 based on point features under low-texture scenes, a stereo visual SLAM algorithm integrating point, line, and plane features was proposed. An improved EDLines line feature extraction algorithm was designed and introduced into ORB-SLAM2. By employing short-line suppression and similar-line merging strategies, computational time was reduced while enhancing the quality of line feature extraction. A plane features extraction method based on intersecting lines was proposed. Geometric constraints derived from extracted plane features were used to optimize pose estimation, and reprojection errors were reduced. A joint optimization method for point, line, and plane features was introduced, integrating geometric relationships across multiple features to mitigate cumulative errors from single-feature reliance. The proposed algorithm’s effectiveness was validated on KITTI, EuRoC, and UMA-VI datasets. Experimental results demonstrate that compared to ORB-SLAM2, point-line feature-based SLAM, and point-plane feature-based SLAM algorithms, the proposed method achieves superior positioning accuracy and robustness.

Key words: low-texture environment    visual SLAM    line features    plane features    joint optimization
收稿日期: 2025-02-15 出版日期: 2026-02-03
CLC:  TP 242  
基金资助: 国家自然科学基金资助项目(61702320);上海市晨光计划(15CG62).
通讯作者: 饶蕾     E-mail: 949795713@qq.com;raol@sdju.edu.cn
作者简介: 汪泽(1997—),男,硕士生,从事视觉SLAM算法研究. orcid.org/0009-0007-2603-3803. E-mail:949795713@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
汪泽
饶蕾
范光宇
陈年生
程松林
杨定裕
姜楚乔

引用本文:

汪泽,饶蕾,范光宇,陈年生,程松林,杨定裕,姜楚乔. 低纹理环境下融合点线面特征的双目视觉SLAM算法[J]. 浙江大学学报(工学版), 2026, 60(2): 322-331.

Ze WANG,Lei RAO,Guangyu FAN,Niansheng CHEN,Songlin CHENG,Dingyu YANG,Chuqiao JIANG. Stereo visual SLAM algorithm for fusing point-line-plane features in low texture environments. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 322-331.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.010        https://www.zjujournals.com/eng/CN/Y2026/V60/I2/322

图 1  融合点线面特征的双目视觉SLAM算法框架
图 2  相似线段合并
图 3  不同算法的线特征提取效果对比
图 4  线段及端点匹配
图 5  平面特征提取
场景nf
线
走廊199285
大厅305326
楼梯2123210
表 1  不同场景的点线面特征数量
图 6  特征提取
序列RMSE/m
ORB-SLAM2Line-SLAMPL-SLAMRS-SLAM本研究
004.9583.9034.5653.7543.795
016.2109.0788.81610.5745.704
029.5529.8879.9469.7288.052
030.2610.2430.2550.6540.271
040.1720.1750.1920.1990.232
051.9571.9111.8562.0561.800
062.6952.4282.5532.1521.927
071.5771.4691.4281.3091.109
083.1373.1633.0893.6252.788
092.9012.8652.8753.2002.373
100.9890.9540.8181.0730.795
平均值3.1283.2793.3083.3952.622
表 2  不同视觉SLAM算法在KITTI 数据集上的平移均方根误差比较
图 7  不同视觉SLAM算法在KITTI数据集2种序列中的位姿估计轨迹对比
序列RMSE/m
ORB-SLAM2Line-SLAMPL-SLAMRS-SLAM本研究
MH_01_easy0.03610.03790.04540.03650.0354
MH_02_easy0.03850.04000.03620.03490.0378
MH_03_medium0.03710.04050.04170.03700.0348
MH_04_difficult0.05370.04800.05250.09180.0628
MH_05_difficult0.11880.09610.10680.04570.0451
V1_01_easy0.08740.08700.09100.08610.0858
V1_02_medium0.08180.13970.23740.06980.0647
V1_03_difficult0.19230.16930.19200.18510.1596
V2_01_easy0.08520.06860.06830.06770.0607
V2_02_medium0.09450.08900.07340.08240.0727
平均值0.08250.11760.12950.07370.0659
表 3  不同视觉SLAM算法在EuRoC数据集上的平移均方根误差比较
图 8  不同视觉SLAM算法在序列V2_01_easy中的位姿估计轨迹对比
图 9  序列V1_02_medium的特征地图
序列RMSE/m
ORB-SLAM2Line-SLAMPL-SLAM本研究
corridor-eng1.46181.22271.18520.9728
class-csc10.33350.30440.31880.2565
class-csc20.45510.41810.43380.3812
parking-csc10.72130.45100.52150.3815
hall1-rev-eng0.10450.08240.08750.0639
hall1-eng0.03280.03450.0269
third-floor-eng0.05100.05260.0486
平均值0.43940.36600.37620.3044
表 4  不同视觉SLAM算法在UMA-VI数据集上的平移均方根误差比较
图 10  不同视觉SLAM算法在序列corridor-eng中的位姿估计轨迹比较
1 CADENA C, CARLONE L, CARRILO H, et al Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32 (6): 1309- 1332
doi: 10.1109/TRO.2016.2624754
2 TAKETOMI T, UCHIYAMA H, IKEDA S Visual SLAM algorithms: a survey from 2010 to 2016[J]. IPSJ Transactions on Computer Vision and Applications, 2017, 9: 16
doi: 10.1186/s41074-017-0027-2
3 ENGEL J, KOLTUN V, CREMERS D Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (3): 611- 625
doi: 10.1109/TPAMI.2017.2658577
4 MUR-ARTAL R, MONTIEL J, TARDÓS J ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31 (5): 1147- 1163
doi: 10.1109/TRO.2015.2463671
5 MUR-ARTAL R, TARDÓS J ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33 (5): 1255- 1262
doi: 10.1109/TRO.2017.2705103
6 CAMPOS C, ELVIRA R, RODRÍGUEZ J, et al ORB-SLAM3: an accurate open-source library for visual, visual–inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37 (6): 1874- 1890
doi: 10.1109/TRO.2021.3075644
7 WEI H, TANG F, XU Z, et al A point-line VIO system with novel feature hybrids and with novel line predicting-matching[J]. IEEE Robotics and Automation Letters, 2021, 6 (4): 8681- 8688
doi: 10.1109/LRA.2021.3113987
8 KAESS M. Simultaneous localization and mapping with infinite planes [C]// Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 4605–4611.
9 PUMAROLA A, VAKHITOV A, AGUDO A, et al. PL-SLAM: real-time monocular visual SLAM with points and lines [C]// Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 4503–4508.
10 GIOI R, JAKUBOWICZ J, MOREL J, et al LSD: a fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (4): 722- 732
doi: 10.1109/TPAMI.2008.300
11 QIAN K, ZHAO W, LI K, et al Visual SLAM with BoPLW pairs using egocentric stereo camera for wearable-assisted substation inspection[J]. IEEE Sensors Journal, 2020, 20 (3): 1630- 1641
doi: 10.1109/JSEN.2019.2947275
12 TREVOR A J B, GEDIKLI S, RUSU R B, et al Efficient organized point cloud segmentation with connected components[J]. Semantic Perception Mapping Exploration, 2013, 10 (6): 251- 257
13 MA L, KERL C, STÜCKLER J, et al. CPA-SLAM: consistent plane-model alignment for direct RGB-D SLAM [C]// Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 1285–1291.
14 ZHOU L, KOPPEL D, KAESS M Lidar SLAM with plane adjustment for indoor environment[J]. IEEE Robotics and Automation Letters, 2021, 6 (4): 7073- 7080
doi: 10.1109/LRA.2021.3092274
15 ZHANG X, WANG W, QI X, et al. Stereo plane SLAM based on intersecting lines [C]// Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 6566–6572.
16 黄宁生, 陈靖, 缪远东 基于平面约束的RGB-D SLAM系统[J]. 计算机应用研究, 2020, 37 (8): 2526- 2530
HUANG Ningsheng, CHEN Jing, MIAO Yuandong RGB-D SLAM system based on plane constraint[J]. Application Research of Computers, 2020, 37 (8): 2526- 2530
doi: 10.19734/j.issn.1001-3695.2019.03.0100
17 ZHANG X, WANG W, QI X, et al Point-plane SLAM using supposed planes for indoor environments[J]. Sensors, 2019, 19 (17): 3795
doi: 10.3390/s19173795
18 WANG H, WEI H, XU Z, et al RSS: robust stereo SLAM with novel extraction and full exploitation of plane features[J]. IEEE Robotics and Automation Letters, 2024, 9 (6): 5158- 5165
doi: 10.1109/LRA.2024.3388854
19 YAN J, ZHENG Y, YANG J, et al PLPF-VSLAM: an indoor visual SLAM with adaptive fusion of point-line-plane features[J]. Journal of Field Robotics, 2024, 41 (1): 50- 67
doi: 10.1002/rob.22242
20 SHU F, WANG J, PAGANI A, et al. Structure PLP-SLAM: efficient sparse mapping and localization using point, line and plane for monocular, RGB-D and stereo cameras [C]// Proceedings of the 2023 IEEE International Conference on Robotics and Automation. London: IEEE, 2023: 2105–2112.
21 AKINLAR C, TOPAL C EDLines: a real-time line segment detector with a false detection control[J]. Pattern Recognition Letters, 2011, 32 (13): 1633- 1642
doi: 10.1016/j.patrec.2011.06.001
22 ZHANG L, KOCH R An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency[J]. Journal of Visual Communication and Image Representation, 2013, 24 (7): 794- 805
doi: 10.1016/j.jvcir.2013.05.006
23 BURRI M, NIKOLIC J, GOHL P, et al The EuRoC micro aerial vehicle datasets[J]. International Journal of Robotics Research, 2016, 35 (10): 1157- 1163
doi: 10.1177/0278364915620033
24 GEIGER A, LENZ P, STILLER C, et al Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32 (11): 1231- 1237
doi: 10.1177/0278364913491297
[1] 林俊杰,朱雅光,刘春潮,刘昊洋. 面向移动作业的腿足机器人数字孪生系统[J]. 浙江大学学报(工学版), 2024, 58(9): 1956-1969.
[2] 林凯,梁新武,蔡纪源. 基于重投影深度差累积图与静态概率的动态RGB-D SLAM算法[J]. 浙江大学学报(工学版), 2022, 56(6): 1062-1070.
[3] 马鑫,梁新武,蔡纪源. 基于点线特征的快速视觉SLAM方法[J]. 浙江大学学报(工学版), 2021, 55(2): 402-409.
[4] 马腾, 赵兴忠, 高博青, 吴慧. 自由曲面形状和拓扑联合优化研究[J]. 浙江大学学报(工学版), 2015, 49(10): 1946-1951.
[5] 陈勋, 张朝阳, 罗海燕. 无线Mesh网络中功率控制、信道分配和调度的联合优化[J]. J4, 2009, 43(8): 1406-1411.
[6] 杜维 罗海燕 张朝阳 赵志峰. 联合路由、信道分配和调度的无线Mesh网络容量[J]. , 2009, 43(4): 615-620.
[7] 林挺萃 殷锐 张朝阳. HARQ系统中的功率与速率联合优化方法[J]. , 2009, 43(4): 651-657.
[8] 柯映林 王青 范树迁 朱伟东 李岸 陈曦. RE-SOFT系统架构及关键技术[J]. J4, 2006, 40(8): 1327-1332.
[9] 柯映林 王青. 基于截面特征相容的曲面约束重构[J]. J4, 2006, 40(10): 1715-1719.