Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (9): 1902-1910    DOI: 10.3785/j.issn.1008-973X.2025.09.014
电气工程     
协同光伏和电动汽车的智能家庭能量管理优化策略
刘迪迪1(),钟松秀1,刘以团1,邹艳丽1,唐超尘2,*()
1. 广西师范大学 电子与信息工程学院 广西高校非线性电路与光通信重点实验室,广西 桂林 541004
2. 桂林航天工业学院 计算机科学与工程学院,广西 桂林 541004
Optimization strategy for smart home energy management through synergistic integration of photovoltaic systems and electric vehicles
Didi LIU1(),Songxiu ZHONG1,Yituan LIU1,Yanli ZOU1,Chaochen TANG2,*()
1. Key Laboratory of Nonlinear Circuits and Optical Communications, School of Electronic and Information Engineering, Guangxi Normal University, Guilin 541004, China
2. School of Computer Science and Engineering, Guilin University of Aerospace Technology, Guilin 541004, China
 全文: PDF(1518 KB)   HTML
摘要:

针对家庭能耗持续增长以及光伏发电和家庭负荷带来的不确定性问题,利用电动汽车(EV)的储能特性并考虑其电池因频繁充/放电带来的容量退化成本,建立协同光伏发电随机性和智能电器用电灵活性的家庭能量管理优化调度模型. 基于改进的Lyapunov优化理论提出时变电价下的实时能量调度算法,该算法通过控制EV的充/放电、调度不同类型家庭电器的运行,以及优化家庭与电网之间的双向电力交易,应对光伏发电以及电网电价的时变性,在确保各家庭电力需求等待时延不超过可容忍期限的前提下,最大化能源效用. 理论分析表明,所提算法能够在不依赖系统先验统计信息的情况下使优化目标趋于最优值. 通过与现有算法的对比及在不同条件下的性能分析,验证了所提优化策略的有效性与经济性.

关键词: 家庭能量管理智能家庭电动汽车Lyapunov优化实时调度    
Abstract:

Household energy consumption is growing continuously, with uncertainties arising from photovoltaic (PV) generation and household loads. To address these issues, an optimal scheduling model for household energy management was developed. The energy storage capabilities of electric vehicle (EV) were leveraged, while battery degradation costs caused by frequent charging/discharging were accounted for. The stochastic nature of PV generation and the flexibility in power consumption of smart appliances were also synergized. A real-time energy scheduling algorithm under time-varying tariffs was proposed based on the improved Lyapunov optimization theory. EV charging/discharging was controlled, the operation of different household appliances was scheduled, and the bidirectional power transactions between households and the grid were optimized. The time-varying nature of PV generation and grid tariffs was effectively coped with. Energy utility was maximized while the waiting time delay for each household power demand was ensured not to exceed its tolerable period. Theoretical analysis showed that the proposed algorithm could drive the optimization objective to converge to the optimal value without relying on prior statistical information of the system. The effectiveness and economic efficiency of the proposed optimization strategy were verified through comparisons with existing algorithms and performance analyses under various conditions.

Key words: home energy management    smart home    electric vehicle    Lyapunov optimization    real-time scheduling
收稿日期: 2024-10-08 出版日期: 2025-08-25
CLC:  TM 734  
基金资助: 国家自然科学基金资助项目(62061006, 1216200);广西类脑计算与智能芯片重点实验室基金资助项目(BCIC-23-Z7);广西研究生教育创新计划项目(XYCS2025130).
通讯作者: 唐超尘     E-mail: ldd866@gxnu.edu.cn;36088653@qq.com
作者简介: 刘迪迪(1980—),女,教授,从事电力系统控制、随机网络优化. orcid.org/0000-0002-4248-0669. E-mail:ldd866@gxnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘迪迪
钟松秀
刘以团
邹艳丽
唐超尘

引用本文:

刘迪迪,钟松秀,刘以团,邹艳丽,唐超尘. 协同光伏和电动汽车的智能家庭能量管理优化策略[J]. 浙江大学学报(工学版), 2025, 59(9): 1902-1910.

Didi LIU,Songxiu ZHONG,Yituan LIU,Yanli ZOU,Chaochen TANG. Optimization strategy for smart home energy management through synergistic integration of photovoltaic systems and electric vehicles. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1902-1910.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.014        https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1902

图 1  家庭能量系统结构示意图
参数取值
时隙间隔/min15
总时隙数/个960
能量需求正态分布
电价/元0.5~2.0
β0.9
CP/(元·kW?1·h?1)1260
$\delta $/%0.27
表 1  家庭能量管理系统参数设置
图 2  典型10 d周期内PV发电量
参数类型参数数值
EV参数EV模型Tesla Model 3
电池最大容量/(kW·h)50
最大充/放电功率/(kW·(15 min)?1)11
充/放电效率0.9
驾驶活动出发时间8:00
到达时间19:00
出发前的电池电量/(kW·h)≥40
表 2  EV相关数据
图 3  家庭能量管理优化结果
图 4  EV充放电与电网电价的关系
图 5  电网电力交易与电网电价的关系
图 6  不同电器队列积压与能量分配
图 7  不同算法下的用户10 d累计收益对比
图 8  不同天气条件下用户10 d累计收益对比
图 9  优化前、后PV发电就地消纳量对比
队列$ \bar t_{\mathrm{d}}/\Delta t $
本研究算法“最后期限满足”算法
电器14.0657.477
电器23.69610.395
电器33.33411.303
EV2.8606.776
表 3  2种算法下平均时延对比
1 SAKAH M, DE LA RUE DU CAN S, DIAWUO F A, et al A study of appliance ownership and electricity consumption determinants in urban Ghanaian households[J]. Sustainable Cities and Society, 2019, 44: 559- 581
doi: 10.1016/j.scs.2018.10.019
2 HAN B, ZAHRAOUI Y, MUBIN M, et al Home energy management systems: a review of the concept, architecture, and scheduling strategies[J]. IEEE Access, 2023, 11: 19999- 20025
doi: 10.1109/ACCESS.2023.3248502
3 MISCHOS S, DALAGDI E, VRAKAS D Intelligent energy management systems: a review[J]. Artificial Intelligence Review, 2023, 56 (10): 11635- 11674
doi: 10.1007/s10462-023-10441-3
4 侯慧, 陈跃, 吴细秀, 等 非预测机制下计及碳交易的家庭能量低碳优化实时管理[J]. 电网技术, 2023, 47 (3): 1066- 1078
HOU Hui, CHEN Yue, WU Xixiu, et al Low-carbon optimal real-time management strategy for home energy considering carbon trading under non-prediction mechanisms[J]. Power System Technology, 2023, 47 (3): 1066- 1078
5 ZHANG R, CHENG X, YANG L Flexible energy management protocol for cooperative EV-to-EV charging[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (1): 172- 184
doi: 10.1109/TITS.2018.2807184
6 郑若楠, 李志浩, 唐雅洁, 等 考虑居民用户参与度不确定性的激励型需求响应模型与评估[J]. 电力系统自动化, 2022, 46 (8): 154- 162
ZHENG Ruonan, LI Zhihao, TANG Yajie, et al Incentive demand response model and evaluation considering uncertainty of residential customer participation degree[J]. Automation of Electric Power Systems, 2022, 46 (8): 154- 162
doi: 10.7500/AEPS20210404001
7 王玉彬, 董伟, 陈源奕, 等 基于数据驱动的家庭能量实时经济调控方法[J]. 电力系统自动化, 2022, 46 (13): 21- 29
WANG Yubin, DONG Wei, CHEN Yuanyi, et al Data-driven real-time economic regulation method for household energy[J]. Automation of Electric Power Systems, 2022, 46 (13): 21- 29
doi: 10.7500/AEPS20210517013
8 ALI S, ULLAH K, HAFEEZ G, et al Solving day-ahead scheduling problem with multi-objective energy optimization for demand side management in smart grid[J]. Engineering Science and Technology, an International Journal, 2022, 36: 101135
doi: 10.1016/j.jestch.2022.101135
9 GHOLAMPOUR K, ADABI J, GHOLINEZHAD H, et al Optimal hierarchical energy management system with plug-and-play capability for neighborhood home microgrids[J]. IEEE Transactions on Industrial Electronics, 2024, 71 (8): 9067- 9076
doi: 10.1109/TIE.2023.3319729
10 PRUM P, CHAROEN P, KHAN M A, et al Energy management scheme for optimizing multiple smart homes equipped with electric vehicles[J]. Energies, 2024, 17 (1): 254
doi: 10.3390/en17010254
11 ABDELAAL G, GILANY M I, ELSHAHED M, et al Integration of electric vehicles in home energy management considering urgent charging and battery degradation[J]. IEEE Access, 2021, 9: 47713- 47730
doi: 10.1109/ACCESS.2021.3068421
12 SHARDA S, SINGH M, SHARMA K Demand side management through load shifting in IoT based HEMS: overview, challenges and opportunities[J]. Sustainable Cities and Society, 2021, 65: 102517
doi: 10.1016/j.scs.2020.102517
13 BHAMIDI L, SIVASUBRAMANI S Optimal sizing of smart home renewable energy resources and battery under prosumer-based energy management[J]. IEEE Systems Journal, 2020, 15 (1): 105- 113
14 张甜, 赵奇, 陈中, 等 基于深度强化学习的家庭能量管理分层优化策略[J]. 电力系统自动化, 2021, 45 (21): 149- 158
ZHANG Tian, ZHAO Qi, CHEN Zhong, et al Hierarchical optimization strategy for home energy management based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45 (21): 149- 158
doi: 10.7500/AEPS20210331010
15 WEI G, CHI M, LIU Z W, et al Deep reinforcement learning for real-time energy management in smart home[J]. IEEE Systems Journal, 2023, 17 (2): 2489- 2499
doi: 10.1109/JSYST.2023.3247592
16 刘迪迪, 杨文宇, 廖志贤, 等 家庭智能电器负荷调度和能量分配优化算法[J]. 浙江大学学报: 工学版, 2024, 58 (4): 790- 798
LIU Didi, YANG Wenyu, LIAO Zhixian, et al Load scheduling and energy allocation optimization algorithm for intelligent home appliances[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (4): 790- 798
17 ALZAHRANI A, SAJJAD K, HAFEEZ G, et al Real-time energy optimization and scheduling of buildings integrated with renewable microgrid[J]. Applied Energy, 2023, 335: 120640
doi: 10.1016/j.apenergy.2023.120640
18 BEER S, GOMEZ T, DALLINGER D, et al An economic analysis of used electric vehicle batteries integrated into commercial building microgrids[J]. IEEE Transactions on Smart Grid, 2012, 3 (1): 517- 525
doi: 10.1109/TSG.2011.2163091
19 NEELY M J Stochastic network optimization with application to communication and queueing systems[J]. Synthesis Lectures on Communication Networks, 2010, 3 (1): 1- 211
[1] 陈喜群,钱忆薇,莫栋. 电动汽车充电平台充电桩数量和价格协同优化[J]. 浙江大学学报(工学版), 2023, 57(9): 1785-1793.
[2] 杜凯,朱国荣,陆江华,庞牧野. 电动汽车无线充电系统金属异物检测方法[J]. 浙江大学学报(工学版), 2022, 56(1): 56-62.
[3] 夏雪,赵震,张晋杰,唐亮. 车用圆柱锂电池及模组的机械完整性[J]. 浙江大学学报(工学版), 2021, 55(11): 2134-2141.
[4] 尚夏,王美佳,许刘晓,章立辉. 城市区域电动汽车充电设施配置优化[J]. 浙江大学学报(工学版), 2020, 54(6): 1210-1217.
[5] 潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 2017, 51(1): 9-16.
[6] 叶丽雅,汪震,文福拴,杨俊,江道灼. V2G代理商调频服务经济效益评估[J]. 浙江大学学报(工学版), 2016, 50(9): 1831-1840.
[7] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.
[8] 马浩军,朱绍鹏,俞小莉,许印川,林鼎. 考虑侧倾运动的电动汽车电子差速控制[J]. 浙江大学学报(工学版), 2016, 50(3): 566-573.
[9] 杨朝晖,李善平,林欣. 增量型上下文信息服务的质量优化实时调度[J]. J4, 2012, 46(1): 90-97.
[10] 李顶根 陈军 吴朝晖. 基于Arm-Linux的车载信息平台的研制[J]. J4, 2006, 40(9): 1531-1535.