计算机技术与控制工程 |
|
|
|
|
基于无标度网络的类脑储备池拓扑设计 |
刘瑄昀1( ),闫莹1,於志勇1,2,3,黄昉菀1,2,3,*( ) |
1. 福州大学 计算机与大数据学院,福建 福州 350108 2. 福州大学 福建省网络计算与智能信息处理重点实验室,福建 福州 350108 3. 大数据智能教育部工程研究中心,福建 福州 350108 |
|
Topological design of brain-like reservoir based on scale-free network |
Xuanyun LIU1( ),Ying YAN1,Zhiyong YU1,2,3,Fangwan HUANG1,2,3,*( ) |
1. College of Computer and Data Sciences, Fuzhou University, Fuzhou 350108, China 2. Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou 350108, China 3. Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou 350108, China |
引用本文:
刘瑄昀,闫莹,於志勇,黄昉菀. 基于无标度网络的类脑储备池拓扑设计[J]. 浙江大学学报(工学版), 2025, 59(7): 1385-1393.
Xuanyun LIU,Ying YAN,Zhiyong YU,Fangwan HUANG. Topological design of brain-like reservoir based on scale-free network. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1385-1393.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.006
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1385
|
1 |
FOLGHERAITER M, YSKAK A, YESSIRKEPOV S One-shot bipedal robot dynamics identification with a reservoir-based RNN[J]. IEEE Access, 2023, 11: 50180- 50194
doi: 10.1109/ACCESS.2023.3277977
|
2 |
WANG H, LONG X, LIU X X FastESN: fast echo state network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (12): 10487- 10501
doi: 10.1109/TNNLS.2022.3167466
|
3 |
LIN J, CHUNG F L, WANG S A fast parametric and structural transfer leaky integrator echo state network for reservoir computing[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54 (5): 3257- 3269
doi: 10.1109/TSMC.2024.3358567
|
4 |
AKIYAMA T, TANAKA G Computational efficiency of multi-step learning echo state networks for nonlinear time series prediction[J]. IEEE Access, 2022, 10: 28535- 28544
doi: 10.1109/ACCESS.2022.3158755
|
5 |
VIEHWEG J, WORTHMANN K, MÄDER P Parameterizing echo state networks for multi-step time series prediction[J]. Neurocomputing, 2023, 522: 214- 228
doi: 10.1016/j.neucom.2022.11.044
|
6 |
HUANG L L, ZHANG Y, XIANG J H, et al Extreme multistability in a hopfield neural network based on two biological neuronal systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69 (11): 4568- 4572
|
7 |
BEHERA R K, NAIK D, RAMESH D, et al MR-IBC: mapreduce-based incremental betweenness centrality in large-scale complex networks[J]. Social Network Analysis and Mining, 2020, 10 (1): 25
doi: 10.1007/s13278-020-00636-9
|
8 |
ALESSANDRETTI L, NATERA OROZCO L G, SABERI M, et al Multimodal urban mobility and multilayer transport networks[J]. Environment and Planning B: Urban Analytics and City Science, 2023, 50 (8): 2038- 2070
doi: 10.1177/23998083221108190
|
9 |
杨旭华, 王磊, 叶蕾, 等 基于节点相似性和网络嵌入的复杂网络社区发现算法[J]. 计算机科学, 2022, 49 (3): 121- 128 YANG Xuhua, WANG Lei, YE Lei, et al Complex network community detection algorithm based on node similarity and network embedding[J]. Computer Science, 2022, 49 (3): 121- 128
doi: 10.11896/jsjkx.210200009
|
10 |
楼洋, 李均利, 李升, 等 复杂网络能控性鲁棒性研究进展[J]. 自动化学报, 2022, 48 (10): 2374- 2391 LOU Yang, LI Junli, LI Sheng, et al Recent progress in controllability robustness of complex networks[J]. Acta Automatica Sinica, 2022, 48 (10): 2374- 2391
|
11 |
KAWAI Y, PARK J, ASADA M A small-world topology enhances the echo state property and signal propagation in reservoir computing[J]. Neural Networks, 2019, 112: 15- 23
doi: 10.1016/j.neunet.2019.01.002
|
12 |
WANG Q, DU C, GENG Y, et al Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks[J]. Chaos, Solitons and Fractals, 2020, 130: 109453
doi: 10.1016/j.chaos.2019.109453
|
13 |
CHENG J, WU X, ZHOU M, et al A novel method for detecting new overlapping community in complex evolving networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49 (9): 1832- 1844
doi: 10.1109/TSMC.2017.2779138
|
14 |
TSIOTAS D Detecting differences in the topology of scale-free networks grown under time-dynamic topological fitness[J]. Scientific Reports, 2020, 10: 10630
doi: 10.1038/s41598-020-67156-6
|
15 |
SIDOROV S, MIRONOV S, GRIGORIEV A, et al An investigation into the trend stationarity of local characteristics in media and social networks[J]. Systems, 2022, 10 (6): 249
doi: 10.3390/systems10060249
|
16 |
WANG B, ZHAO Y, HU F, et al Anomaly detection with subgraph search and vertex classification preprocessing in Chung-Lu random networks[J]. IEEE Transactions on Signal Processing, 2018, 66 (20): 5255- 5268
doi: 10.1109/TSP.2018.2866847
|
17 |
GLOS A Spectral similarity for Barabási–Albert and Chung-Lu models[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 516: 571- 578
doi: 10.1016/j.physa.2018.10.050
|
18 |
FASINO D, TONETTO A, TUDISCO F Generating large scale-free networks with the Chung-Lu random graph model[J]. Networks, 2021, 78 (2): 174- 187
doi: 10.1002/net.22012
|
19 |
WANG W, LIANG J, LIU R, et al A robust variable selection method for sparse online regression via the elastic net penalty[J]. Mathematics, 2022, 10 (16): 2985
doi: 10.3390/math10162985
|
20 |
WANG L, SU Z, QIAO J, et al A pseudo-inverse decomposition-based self-organizing modular echo state network for time series prediction[J]. Applied Soft Computing, 2022, 116: 108317
doi: 10.1016/j.asoc.2021.108317
|
21 |
WANG X, WANG X, MA B, et al High precision error prediction algorithm based on ridge regression predictor for reversible data hiding[J]. IEEE Signal Processing Letters, 2021, 28: 1125- 1129
doi: 10.1109/LSP.2021.3080181
|
22 |
TAN Y X Dynamics analysis of Mackey-Glass model with two variable delays[J]. Mathematical Biosciences and Engineering, 2020, 17 (5): 4513- 4526
doi: 10.3934/mbe.2020249
|
23 |
FU S, FANG X, CHEN X. Hybrid enhanced echo state network for nonlinear prediction of multivariate chaotic time series [C]// Proceedings of the IEEE International Conference on Networking, Sensing and Control. Shanghai: IEEE, 2022: 1–6.
|
24 |
YU Y, WANG Y, LUO Z, et al Link prediction algorithm based on clustering coefficient and node centrality[J]. Journal of Tsinghua University, 2022, 62 (1): 98- 104
|
25 |
DONG Z, DUAN Y, ZHOU Y, et al Weight-adaptive channel pruning for CNNs based on closeness-centrality modeling[J]. Applied Intelligence, 2024, 54 (1): 201- 215
doi: 10.1007/s10489-023-05164-5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|