Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1253-1264    DOI: 10.3785/j.issn.1008-973X.2025.06.016
土木工程、交通工程     
石灰激发低碳胶凝材料的水化特性与力学性能
吴萌1,2,3(),张云升2,*(),刘志勇2,刘诚2,佘伟2,王立国2,马瑞3
1. 安徽理工大学 土木建筑学院,安徽 淮南 232001
2. 东南大学 材料科学与工程学院,江苏 南京 211189
3. 安徽建筑大学 安徽省先进建筑材料重点实验室,安徽 合肥 230022
Hydration characteristics and mechanical performance of lime and gypsum-activated low carbon cementitious materials
Meng WU1,2,3(),Yunsheng ZHANG2,*(),Zhiyong LIU2,Cheng LIU2,Wei SHE2,Liguo WANG2,Rui MA3
1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
3. Anhui Province Engineering Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China
 全文: PDF(3012 KB)   HTML
摘要:

为了降低传统水泥工业对环境的负荷,将矿渣粉与粉煤灰复合作为主要前驱体,设计和制备了新型石灰石膏激发低碳胶凝材料(LCM). 采用X射线衍射定量分析(QXRD)、热重分析(TGA)、傅里叶变换红外光谱(FTIR)、压汞法(MIP)、扫描电镜-能谱仪分析(SEM-EDS)等测试方法分析LCM水化特性并探究采用不同质量比的LCM的力学性能演变规律. 结果表明:LCM水化产物主要包括钙矾石、低钙硅原子比C-(A)-S-H凝胶及少量AFm-CO3;在水化早期,钙矾石大量形成,会导致LCM的热流曲线在水化减速期出现新的水化放热峰;在长期水化后,杆棒状钙矾石晶体作为骨架嵌入C-(A)-S-H凝胶当中并形成致密整体,此时LCM孔隙结构具有较高的曲折度与较低的连通度. 通过优化LCM质量比,可显著提升LCM各龄期的力学性能,其中C3砂浆28 d抗压强度可达53.5 MPa,与对照组相比,抗压强度提高37.9%,且后期强度持续增加. 在LCM中掺入少量硅酸盐水泥,能提高液相碱性,从而有效促进矿物掺和料的水化反应,并提高LCM整体水化速率,进而提升LCM中后期力学性能.

关键词: 石灰胶凝材料水化产物孔隙结构C-(A)-S-H    
Abstract:

The composite slag and fly ash were used as the main precursors to design and prepare a novel type of lime and gypsum-activated low carbon cementitious material (LCM), to decrease the environmental loading of the cement industry. The evolution rules of mechanical properties of LCM mixtures with different mass ratios and the hydration characteristics of LCM were analyzed via quantitative X-ray diffraction (QXRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), mercury intrusion porosimetry (MIP) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) method. Results showed that the hydration products of LCM were mainly composed of ettringite, C-(A)-S-H gel with a low Ca/Si atomic ratio, and a small amount of AFm-CO3. A large amount of ettringite formed in the early stage of hydration, causing the heat flow curve of LCM to exhibit a new exothermic peak during the decelerating period of hydration. After long-term hydration, rod-like ettringite crystals were embedded into C-(A)-S-H gel as the skeleton, forming a dense paste, and the pore structure of LCM had a high tortuosity and low connectivity. The mechanical performance of LCM at various ages was significantly increased by optimizing the mixture proportion. The compressive strength of C3 mortar at 28 days could reach 53.5 MPa, which represented an increase of 37.9% compared to the control group, and the strength continued to increase over time. A small amount of Portland cement was introduced into the LCM, which effectively increased the alkalinity of the liquid phase, promoted the hydration reaction of the mineral admixtures and increased the overall hydration rate of LCM, thereby improving the mechanical properties of LCM in the mid-to-late stages.

Key words: lime    cementitious material    hydration product    pore structure    C-(A)-S-H
收稿日期: 2024-08-29 出版日期: 2025-05-30
CLC:  TU 528  
基金资助: 国家自然科学基金资助项目(52208228, U21A20150, 52078125);国家重点研究计划资助项目(2019YFC19044900);安徽省先进建筑材料重点实验室开放课题资助项目(JZCL202406KF).
通讯作者: 张云升     E-mail: wumengseu@qq.com;zhangys279@163.com
作者简介: 吴萌(1988—),男,副教授,从事低碳水泥基材料研究. orcid.org/0000-0003-4476-9690. E-mail:wumengseu@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴萌
张云升
刘志勇
刘诚
佘伟
王立国
马瑞

引用本文:

吴萌,张云升,刘志勇,刘诚,佘伟,王立国,马瑞. 石灰激发低碳胶凝材料的水化特性与力学性能[J]. 浙江大学学报(工学版), 2025, 59(6): 1253-1264.

Meng WU,Yunsheng ZHANG,Zhiyong LIU,Cheng LIU,Wei SHE,Liguo WANG,Rui MA. Hydration characteristics and mechanical performance of lime and gypsum-activated low carbon cementitious materials. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1253-1264.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.016        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1253

原材料wB/%
SiO2CaOAl2O3Fe2O3MgOSO3K2ONa2OLOI
硅酸盐水泥21.6064.384.383.423.432.230.512.54
粉煤灰51.534.4030.416.900.910.911.370.621.52
矿渣粉32.7237.1215.510.245.502.610.300.400.36
石灰0.4797.300.410.231.000.100.3226.75
石膏0.3046.890.140.070.2052.090.117.01
表 1  原材料化学组成
编号$w_{\mathrm{B}} $/%S
硅酸盐水泥复合矿物掺和料石灰
C190 (粉煤灰∶矿渣粉=1∶1)100.3
C21085 (粉煤灰∶矿渣粉=1∶1)50.3
C31080 (粉煤灰∶矿渣粉=1∶1)100.3
C41075 (粉煤灰∶矿渣粉=1∶1)150.3
C52070 (粉煤灰∶矿渣粉=1∶1)100.3
C61080 (粉煤灰∶矿渣粉=2∶1)100.3
C71080 (粉煤灰∶矿渣粉=1∶2)100.3
表 2  LCM组成质量分数表
图 1  LCM样品的XRD图谱
图 2  各LCM样品的XRD图谱定量分析结果
图 3  各LCM样品的FTIR图谱
图 4  LCM样品水化90 d后的TGA曲线
样品wB/%
氢氧化钙(TGA)氢氧化钙(QXRD)化学结合水
C1-90 d3.93.713.8
C2-90 d4.24.113.5
C3-90 d6.56.714.7
C4-90 d10.811.715.4
C5-90 d9.710.315.7
表 3  LCM各样品的氢氧化钙与化学结合水质量分数
图 5  C3样品水化3、90 d时的微结构SEM图像
图 6  水化90 d时LCM样品的MIP试验测试结果
样品P/%Pe/%η/%τ
C1-0.321.56.128.47.2
C3-0.315.84.629.37.0
C5-0.313.44.130.46.9
C3-0.531.314.947.74.6
PC-0.527.614.853.64.0
表 4  LCM样品孔隙结构参数
图 7  各LCM样品的水化放热速率和累积水化热曲线
图 8  石膏质量分数对LCM水化放热的影响
图 9  LCM凝结硬化前浆体和硬化浆体孔溶液的pH值
图 10  各LCM样品力学性能演变规律
M/(kg·kg?1)
原材料LCM
水泥熟料0.880C10.12
消石灰0.750C20.17
矿渣粉0.083C30.21
粉煤灰0.008C40.24
石膏0.200C50.29
硅酸盐水泥0.850C60.20
C70.21
表 5  原材料与LCM样品的碳排放
1 International Energy Agency. CO2 emissions in 2023 [EB/OL]. (2023-03-01)[2024-08-28]. https://www.iea.org/reports/co2-emissions-in-2023.
2 王鑫, 李玉华, 何立环, 等 中国水泥行业2011—2022年二氧化碳和大气污染物排放分析[J]. 中国环境监测, 2024, 40 (2): 8- 18
WANG Xin, LI Yuhua, HE Lihuan, et al Analysis on the emissions of carbon dioxide and air pollutants in China’s cement industry from 2011 to 2022[J]. Environmental Monitoring in China, 2024, 40 (2): 8- 18
3 兰燕, 顾棋, 彭宇, 等 不同CO2养护压力下硫铝酸盐和硅酸盐水泥浆体早期微观结构[J]. 浙江大学学报: 工学版, 2022, 56 (12): 2454- 2462
LAN Yan, GU Qi, PENG Yu, et al Microstructure of early-age calcium sulphoaluminate and ordinary Portland cement paste cured under different CO2 pressures[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (12): 2454- 2462
4 中华人民共和国生态环境部. 2022年中国生态环境统计年报[R]. 北京, 2023.
5 张楚杰, 王玉高, 姚振朝, 等 粉煤灰矿化CO2研究进展[J]. 洁净煤技术, 2024, 30 (2): 300- 315
ZHANG Chujie, WANG Yugao, YAO Zhenchao, et al Research progress of coal fly ash for CO2 mineralization process[J]. Clean Coal Technology, 2024, 30 (2): 300- 315
6 BÍLEK V, NOVOTNÝ R, KOPLÍK J, et al Philosophy of rational mixture proportioning of alkali-activated materials validated by the hydration kinetics of alkali-activated slag and its microstructure[J]. Cement and Concrete Research, 2023, 168: 107139
doi: 10.1016/j.cemconres.2023.107139
7 KIM M J, ISHIDA T, CHO W J Characteristics of micro structure and strength development of alkali activated GGBS-FNS hybrid cement[J]. Construction and Building Materials, 2023, 408: 133773
doi: 10.1016/j.conbuildmat.2023.133773
8 GIANNOPOULOU I, ROBERT P M, PETROU M F, et al Mechanical behavior of construction and demolition waste-based alkali activated materials exposed to fire conditions[J]. Construction and Building Materials, 2024, 415: 134994
doi: 10.1016/j.conbuildmat.2024.134994
9 LIU T, CHEN Y, YUAN B, et al Sodium aluminate activated waste glass: reduced efflorescence behavior by C(N)−A−S−H transformation[J]. Cement and Concrete Research, 2024, 181: 107527
doi: 10.1016/j.cemconres.2024.107527
10 ZUO Y, YE G GeoMicro3D: a novel numerical model for simulating the reaction process and microstructure formation of alkali-activated slag[J]. Cement and Concrete Research, 2021, 141: 106328
doi: 10.1016/j.cemconres.2020.106328
11 KOMKOVA A, HABERT G Environmental impact assessment of alkali-activated materials: examining impacts of variability in constituent production processes and transportation[J]. Construction and Building Materials, 2023, 363: 129032
doi: 10.1016/j.conbuildmat.2022.129032
12 BURCIAGA-DÍAZ O Parameters affecting the properties and microstructure of quicklime (CaO) - activated slag cement pastes[J]. Cement and Concrete Composites, 2019, 103: 104- 111
doi: 10.1016/j.cemconcomp.2019.05.002
13 VASHISTHA P, MOGES K A, PYO S Alkali activation of paper industry lime mud and assessment of its application in cementless binder[J]. Developments in the Built Environment, 2023, 14: 100146
doi: 10.1016/j.dibe.2023.100146
14 ZHAO Y, QIU J, ZHANG S, et al Effect of sodium sulfate on the hydration and mechanical properties of lime-slag based eco-friendly binders[J]. Construction and Building Materials, 2020, 250: 118603
doi: 10.1016/j.conbuildmat.2020.118603
15 BURCIAGA-DÍAZ O, BETANCOURT-CASTILLO I E, MONTES-ESCOBEDO M E, et al One-part pastes and mortars of CaO-Na2CO3 activated blast furnace slag: microstructural evolution, cost and CO2 emissions[J]. Construction and Building Materials, 2023, 368: 130431
doi: 10.1016/j.conbuildmat.2023.130431
16 WU M, ZHANG Y, JI Y, et al Reducing environmental impacts and carbon emissions: study of effects of superfine cement particles on blended cement containing high volume mineral admixtures[J]. Journal of Cleaner Production, 2018, 196: 358- 369
doi: 10.1016/j.jclepro.2018.06.079
17 任增增, 赵卫全, 陈亮, 等 低pH胶凝材料pH测试方法研究[J]. 水利水电技术, 2022, (12): 125- 133
REN Zengzeng, ZHAO Weiquan, CHEN Liang, et al Investigation into the pH measurement methodology of low pH cementitious materials[J]. Water Resources and Hydropower Engineering, 2022, (12): 125- 133
18 RICHARDSON I G Model structures for C-(A)-S-H(I)[J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2014, 70 (6): 903- 923
doi: 10.1107/S2052520614021982
19 APPELO C A J The anion exchange properties of AFm (hydrocalumite-group) minerals defined from solubility experiments and crystallographic information[J]. Cement and Concrete Research, 2021, 140: 106270
doi: 10.1016/j.cemconres.2020.106270
20 AVET F, SCRIVENER K Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3)[J]. Cement and Concrete Research, 2018, 107: 124- 135
doi: 10.1016/j.cemconres.2018.02.016
21 SUN G, ZHANG J, YAN N Microstructural evolution and characterization of ground granulated blast furnace slag in variant pH[J]. Construction and Building Materials, 2020, 251: 118978
doi: 10.1016/j.conbuildmat.2020.118978
22 SCRIVENER K, SNELLINGS R, LOTHENBACH B. A practical guide to microstructural analysis of cementitious materials [M]. Boca Raton: CRC Press, 2016.
23 SEO J, KIM S, PARK S, et al Microstructural evolution and carbonation behavior of lime-slag binary binders[J]. Cement and Concrete Composites, 2021, 119: 104000
doi: 10.1016/j.cemconcomp.2021.104000
24 ZUNINO F, SCRIVENER K Microstructural developments of limestone calcined clay cement (LC3) pastes after long-term (3 years) hydration[J]. Cement and Concrete Research, 2022, 153: 106693
doi: 10.1016/j.cemconres.2021.106693
25 AVET F, BOEHM-COURJAULT E, SCRIVENER K Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3)[J]. Cement and Concrete Research, 2019, 115: 70- 79
doi: 10.1016/j.cemconres.2018.10.011
26 石加顺. 非饱和水泥基材料气体渗透性研究 [D]. 南京: 东南大学, 2020.
SHI Jiashun. Study on gas permeability of unsaturated cementitious materials [D]. Nanjing: Southeast University, 2020.
27 ZHANG Y, WU K, YANG Z, et al A reappraisal of the ink-bottle effect and pore structure of cementitious materials using intrusion-extrusion cyclic mercury porosimetry[J]. Cement and Concrete Research, 2022, 161: 106942
doi: 10.1016/j.cemconres.2022.106942
28 ZUNINO F, SCRIVENER K The influence of the filler effect on the sulfate requirement of blended cements[J]. Cement and Concrete Research, 2019, 126: 105918
doi: 10.1016/j.cemconres.2019.105918
29 ZUNINO F, SCRIVENER K Insights on the role of alumina content and the filler effect on the sulfate requirement of PC and blended cements[J]. Cement and Concrete Research, 2022, 160: 106929
doi: 10.1016/j.cemconres.2022.106929
30 HUANG Z, WANG Q The effect of temperature on dissolution activity of fly ash and metakaolin in alkaline conditions[J]. Cement and Concrete Composites, 2024, 146: 105363
doi: 10.1016/j.cemconcomp.2023.105363
31 DURDZIŃSKI P T, BEN HAHA M, BERNAL S A, et al Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements[J]. Materials and Structures, 2017, 50 (2): 135
doi: 10.1617/s11527-017-1002-1
32 SKIBSTED J, SNELLINGS R Reactivity of supplementary cementitious materials (SCMs) in cement blends[J]. Cement and Concrete Research, 2019, 124: 105799
doi: 10.1016/j.cemconres.2019.105799
33 中国城市温室气体工作组. 中国产品全生命周期温室气体排放系数集-2022 [M]. 北京: 中国环境出版集团, 2022.
[1] 宋牧原,王宜将,杨微,郎丰飞,陈伟,刘雪莹. 干湿循环中磷石膏基防渗材料的防渗和剪切特性[J]. 浙江大学学报(工学版), 2024, 58(9): 1902-1911.
[2] 范海东,陈竹,赵中阳,梁成思,郑成航,高翔. 1 000 MW燃煤机组湿法脱硫装置氧化系统运行优化[J]. 浙江大学学报(工学版), 2023, 57(4): 675-682.
[3] 朱凯,黄志义,吴珂,武斌,张欣,张驰. 消石灰对沥青阻燃性能的影响[J]. 浙江大学学报(工学版), 2015, 49(5): 963-968.
[4] 吴荣兵, 肖刚, 陈冬, 周慧龙, 倪明江, 高翔, 岑可法. 木质素高温炭化制备导电焦炭特性研究[J]. 浙江大学学报(工学版), 2014, 48(10): 1752-1757.
[5] 陈宝, 张会新, 陈萍. 高碱溶液入渗对GMZ膨润土微观孔隙结构的影响[J]. J4, 2013, 47(4): 602-608.
[6] 裘国华, 施正伦, 余春江, 等. 煤矸石代黏土煅烧水泥熟料配方优化试验研究[J]. J4, 2010, 44(2): 315-319.
[7] 施正伦 骆仲泱 焦有宙 林细光 程乐鸣 王树荣 袁小琴 岑可法. 金属尾矿代黏土配料煅烧水泥熟料试验研究[J]. J4, 2007, 41(11): 1866-1869.
[8] 滕斌 高翔 刘海蛟 骆仲泱 倪明江 岑可法. 添加剂对消石灰结构特性和脱硫性能的影响[J]. J4, 2004, 38(2): 231-239.