Please wait a minute...
J4  2013, Vol. 47 Issue (4): 602-608    DOI: 10.3785/j.issn.1008-973X.2013.04.006
土木工程     
高碱溶液入渗对GMZ膨润土微观孔隙结构的影响
陈宝, 张会新, 陈萍
同济大学 岩土及地下工程教育部重点实验室,上海200092
Influence of hyper-alkaline solution infiltration on microscopic pore structure of compacted GMZ bentonite
CHEN Bao, ZHANG Hui-xin, CHEN Ping
Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
 全文: PDF  HTML
摘要:

为了研究高碱性孔隙水对膨润土缓冲性能的影响及微观机理,采用浓度为0.6 mol/L的NaOH溶液模拟碱性孔隙水,对初始干密度分别为1.50和1.70 g/cm3的高庙子(GMZ)膨润土试样开展渗透试验.利用AutoPore IV 9510型全自动压汞仪对试样的微观孔隙结构进行水银孔隙率定试验(MIP),借助X射线衍射试验(XRD)对试样的矿物成分变化进行分析.由试验结果可见,GMZ膨润土试样的孔隙量与平均孔径呈近似双峰变化关系;膨润土经水化作用后,试样内部的孔隙率和大孔隙量均明显减少,小孔隙量增加;在碱溶液入渗作用下,膨润土内部的孔隙率增大,膨润土的有效成分——蒙脱石质量分数减少.研究表明,碱性孔隙水的长期入渗会逐渐溶解膨润土中的蒙脱石,增大膨润土的孔隙率,提高膨润土的长期渗透性,可能会导致膨润土的封闭和缓冲性能降低.

Abstract:

 The influence of hyper-alkaline solution on the properties of bentonite was analyzed from microscopic view. The AutoPore IV 9510 automatic mercury porosimeter was used in mercury intrusion porosimetry (MIP) conducted on compacted Gaomiaozi (GMZ) bentonite with the initial dry densities of 1.50 and 1.70 g/cm3, and NaOH solution with a concentration of 0.6 mol/L was applied to simulate hyper-alkaline pore water. The X-ray diffraction (XRD) was employed to analyze the composition alteration of samples. Test results showed that a two-peak shape was observed from curves of relationship between pore volume and the mean pore diameter. Compared to the initially unhydrated samples, the porosity and quantity of macro-pores obviously decrease in hydrated samples, while those of micro-pores increase a little. Compared to de-ion water, the infiltration of hyper-alkaline solution increases the porosity and decreases the smectite content in bentonite with a possible explanation of the smectite dissolution. Therefore, the bentonite submitted to long-term infiltration of hyper-alkaline pore water may lead to the alteration of montmorillonite and porosity, amplifying the permeability, and resulting in a weak ability of sealing and buffering.

出版日期: 2013-04-01
:  P 642.12  
基金资助:

 国家自然科学基金资助项目(40802069).

作者简介: 陈宝(1973—),男,副教授,博导,从事地下工程及岩土力学的研究.E-mail: chenbao@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈宝, 张会新, 陈萍. 高碱溶液入渗对GMZ膨润土微观孔隙结构的影响[J]. J4, 2013, 47(4): 602-608.

CHEN Bao, ZHANG Hui-xin, CHEN Ping. Influence of hyper-alkaline solution infiltration on microscopic pore structure of compacted GMZ bentonite. J4, 2013, 47(4): 602-608.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.04.006        http://www.zjujournals.com/eng/CN/Y2013/V47/I4/602

[1] ATKINSON A. The time dependence of ph within a repository for radioactive waste

disposal [R]. U.K: Harwell Laboratory, 1985.

[2] ANDERSON K, ALLARD B, BENGTSSON M, et al. Chemical composition of cement pore

solutions [J]. Cement and Concrete Research, 1989, 19 (3): 327-332.

[3] BERNER U R. Evolution of pore water chemistry during degradation of cement in a

radioactive waste repository environment [J]. Waste Management, 1992, 12(2/3): 201-

219.

[4] SAVAGE D, WALKER C, ARTHUR R. Alteration of bentonite by hyperalkaline fluids: a

review of the role of secondary minerals [J]. Physics and Chemistry of the Earth,

2007, 32(1/2/3/4/5/6/7): 287-297.

[5] DENEELE D, CUISINIER O, HALLAIRE V, et al. Micostructural evolution and physic-

chemical behavior of compacted clayey soil submitted to an alkaline PLUME [J].

Jounral of Rock Mechanics and Geotechnical Engineering, 2010, 2(2): 169-177.

[6] SUZUKI S, PRAYONGPHAN S, ICHIKAWA Y, et al. In situ observations of the swelling

of bentonite aggregates in NaCl solution [J]. Applied Clay Science, 2005, 29(2): 89-

98.

[7] LLORET A, VILLAR M V. Advances on the knowledge of the thermo-hydro-mechanical

behavior of heavily compacted “FEBEX” bentonite [J]. Physics and Chemistry of the

Earth, 2007, 32(8/9/10/11/12/13/14): 701-715.

[8] PUSCH R, KARNLAND O, HOKMARK H. The microstructure of MX-80 clay with respect to

its bulk physical properties under different environmental conditions [R]. Stockholm

Sweden: Swedish Nuclear Fuel and Waste Management Co. (SKB), 2001.

[9] SPOSITO G, PROST R. Structure of water adsorbed on smectites [J]. Chemical

Reviews, 1982, 82(6): 553-573.

[10] BIRD P. Hydration-phase diagrams and friction of montmorillonite under

laboratory and geologic conditions, with implications for shale compaction, slope

stability, and strength of fault gauge [J]. Tectonophysics, 1984, 107(3/4): 235-260.

[11] 叶为民,钱丽鑫,陈宝,等. 高压实高庙子膨润土的微观结构特征[J]. 同济大学学报:自然

科学版, 2009, 37(1): 31-35.

YE Wei-min, QIAN Li-xin, CHEN Bao, et al. Characteristics of micro-structure of densely

compacted Gaomiaozi bentonite [J]. Journal of Tongji University: Natural Science,

2009, 37(1): 31-35.

[12] 万敏. 温控条件下高压实膨润土土水特征与渗透特性研究[D]. 上海:同济大学, 2010.

WAN Min. Study on soil-water characteristics and permeability of highly compacted GMZ

bentonite with temperature control [D]. Shanghai: Tongji University, 2010.

[13] 钱丽鑫. 高放废物深地质处置库缓冲材料:高庙子膨润土基本特性研究[D]. 上海:同济大

学, 2007.

QIAN Li-xin. A fundamental study of GMZ bentonite as buffer material in deep geological

disposal for high-level radioactive waste [D]. Shanghai: Tongji University, 2007.

[14] LEHIKOINEN J, CARLSSON T, MUURINEN A, et al. Evaluation of factors affecting

diffusion in compacted bentonite [C]∥ Proceedings of the 1995 MRS Fall Symposium.

Boston: Materials Research Society, 1996: 675-682.

[15] NAKAYAMA S, SAKAMOTO Y, YAMAGUCHI T, et al. Dissolution of montmorillonite in

compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide

ions [J]. Applied Clay Science, 2004, 27(1/2): 53-65.

[16] YAMAGUCHI T, SAKAMOTO Y, AKAI M, et al. Experimental and modeling study on long

-term alteration of compacted bentonite with alkaline groundwater [J]. Physics and

Chemistry of the Earth, 2007, 32(1/2/3/4/5/6/7): 298-310.

[17] CUISINIER O, MASROURI F, PELLETIER M, et al. Microstructure of a compacted soil

submitted to an alkaline PLUME [J]. Applied Clay Science, 2008, 40(1/2/3/4): 159-170.

[18] FERNNDEZ R, CUEVAS J, SNCHEZ L, et al. Reactivity of the cement-bentonite

interface with alkaline solutions using transport cells [J]. Applied Geochemistry,

2006, 21(6): 977-992.

[19] SAVAGE D, NOY D, MIHARA M. Modelling the interaction of bentonite with

hyperalkaline uids [J]. Applied Geochemistry, 2002, 17(3): 207-223.

[20] 叶为民,钱丽鑫,陈宝,等. 侧限状态下高压实高庙子膨润土非饱和渗透性的试验研究[J].

岩土工程学报, 2009, 31 (1): 105-108.

YE Wei-min, QIAN Li-xin, CHEN Bao, et al. Laboratory test on unsaturated hydraulic

conductivity of densely compacted Gaomiaozi Bentonite under confined conditions [J].

Chinese Journal of Geotechnical Engineering, 2009, 31 (1): 105-108.

[21] 温志坚. 中国高放废物处置库缓冲材料物理性能[J]. 岩石力学工程学报, 2006, 25 (4):

794-800.

WEN Zhi-jian. Physical property of China’s buffer material for high-level radioactive

waste repositories [J]. Chinese Journal of Rock mechanics and Engineering, 2006, 25

(4): 794-800.

[22] 郭永海,王驹,吕川河,等. 高放废物处置库甘肃北山野马泉预选区地下水化学特征及水-岩作

用模拟[J]. 地学前缘, 2005, 12(增1): 117123.

GUO Yong-hai, WANG Ju, LV Chuan-he, et al. Chemical characteristics of groundwater and

water-rock interaction: modeling of Yemaquan preselected area for China’s high level

radioactive waste repository [J]. Earth Science Frontiers, 2005, 12 (supp.l): 117-

123.

[23] KARNLAND O, OLSSON S, NILSSON U, et al. Experimentally determined swelling

pressures and geochemical interactions of compacted Wyoming bentonite with highly

alkaline solutions [J]. Physics and Chemistry of the Earth, 2007, 32(1/2/3/4/5/6/7):

275-286.

[24] 陈萍. 高碱性环境中高庙子膨润土的膨胀渗透性能研究[D]. 上海:同济大学, 2011.

CHEN Ping. Performance of compacted GMZ bentonite submitted to hyper-alkaline solution

[D]. Shanghai: Tongji University, 2011.

[25] PUSCH R, ZWAHR H, GERBER R, et al. Interaction of cement and smectitic clay:

theory and practice [J]. Applied Clay Science, 2003, 23(1/2/3/4): 203210.

[26] 陈宝, 张会新, 陈萍. 高碱性溶液对高庙子膨润土溶蚀作用的研究[J]. 岩石力学工程学

报, 2012, 31(7): 1478-1483.

CHEN Bao, ZHANG Hui-xin, CHEN Ping. Laboratory test on unsaturated hydraulic

conductivity of densely compacted Gaomiaozi bentonite under confined conditions [J].

Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1478-1483.

No related articles found!