Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (12): 2506-2515    DOI: 10.3785/j.issn.1008-973X.2025.12.005
电子与通信工程     
多层边缘计算网络中任务卸载与资源分配联合优化
肖永清1(),卢榆博2,杨星盟3,魏建威1,苏琳1,郝欣健1,余官定2,*()
1. 内蒙古电力(集团)有限责任公司薛家湾供电分公司,内蒙古 鄂尔多斯 010300
2. 浙江大学 信息与电子工程学院 ,浙江 杭州 310027
3. 内蒙古电力(集团)有限责任公司,内蒙古 呼和浩特 010010
Joint optimization for task offloading and resource allocation in multi-layer edge computing networks
Yongqing XIAO1(),Yubo LU2,Xingmeng YANG3,Jianwei WEI1,Lin SU1,Xinjian HAO1,Guanding YU2,*()
1. Xuejiawan Power Supply Company of Inner Mongolia Electric Power (Group) Co. Ltd, Ordos 010300, China
2. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
3. Inner Mongolia Electric Power (Group) Co. Ltd, Hohhot 010010, China
 全文: PDF(993 KB)   HTML
摘要:

为了解决多层边缘计算网络中通信以及算力异构给无线资源管理带来的问题,提出基于算力和信道质量的多层边缘计算网络优化策略. 给出典型的多层边缘计算网络的性能分析,包括通信性能以及边缘计算时延性能. 以最小化本地计算以及边缘计算的上传、处理、回传的时延为目标,构建基于基站的算力、功率,终端的算力、任务特性,以及用户关联、卸载决策、资源分配的混合整数非线性规划问题,基于迭代优化分别获得基于信道质量和算力的最优用户关联、平衡本地计算和边缘计算的任务卸载策略以及最小化边缘计算时延的无线资源分配. 仿真结果证明了,频谱与算力资源共同优化分配、终端任务的最优卸载在边缘计算网络的重要性,也验证了基于信道质量和算力进行用户关联比传统的只基于信道质量或是算力的方法具有更低的时延.

关键词: 多层边缘计算网络用户关联卸载决策资源分配时延优化    
Abstract:

An optimization strategy for multi-layer edge computing networks based on computing power and channel quality was proposed to address the problem of wireless resource management caused by communication and computing power heterogeneity in multi-layer edge computing networks. A performance analysis of a typical multi-layer edge computing network was presented, including communication performance and edge computing latency performance. A mixed-integer nonlinear programming (MINLP) problem was formulated based on the computing power and transmission power of base stations, the computing power and task characteristics of devices, as well as the user association, offloading decision, and resource allocation, aiming to minimize the latency of local computing and the upload, processing, and backhaul latency of edge computing. Based on an iterative optimization approach, the optimal user association was achieved by considering both channel quality and computing power, a task offloading strategy was developed to balance local and edge computing, and wireless resource allocation was optimized to minimize edge computing latency. Simulation results highlighted the importance of jointly optimizing spectrum and computing resource allocation, as well as optimizing task offloading in edge computing networks, and showed that user association optimized based on both channel quality and computing power achieved lower latency compared to traditional methods that relied on only channel quality or computing power.

Key words: multi-layer edge computing networks    user association    offloading decision    resource allocation    latency optimization
收稿日期: 2024-11-26 出版日期: 2025-11-25
CLC:  TN 915  
基金资助: 内蒙古电力(集团)有限责任公司2024年度科技项目(2024?04?29).
通讯作者: 余官定     E-mail: 1136303434@qq.com;yuguanding@zju.edu.cn
作者简介: 肖永清(1972—),男,正高级工程师,本科,从事电力系统、通信研究. orcid.org/0009-0003-3631-6402. E-mail:1136303434@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
肖永清
卢榆博
杨星盟
魏建威
苏琳
郝欣健
余官定

引用本文:

肖永清,卢榆博,杨星盟,魏建威,苏琳,郝欣健,余官定. 多层边缘计算网络中任务卸载与资源分配联合优化[J]. 浙江大学学报(工学版), 2025, 59(12): 2506-2515.

Yongqing XIAO,Yubo LU,Xingmeng YANG,Jianwei WEI,Lin SU,Xinjian HAO,Guanding YU. Joint optimization for task offloading and resource allocation in multi-layer edge computing networks. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2506-2515.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.005        https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2506

图 1  多层边缘计算网络
图 2  边缘计算处理流程
图 3  资源分配效果验证
图 4  本研究算法与GA、SQP算法的时延对比
图 5  本研究算法与GA、SQP算法的吞吐量对比
图 6  不同卸载决策下的时延对比
图 7  不同卸载决策下的吞吐量对比
策略T/s
低带宽适中带宽高带宽
算法1862.73856.39854.43
算法6897.33897.33897.33
算法724859.0024812.0024805.00
表 1  基站极限算力下的时延
图 8  不同用户关联下的时延对比
图 9  不同用户关联下的吞吐量对比
1 杨守义, 陈怡航, 张双玲, 等 面向未来移动通信的移动边缘计算研究综述[J]. 郑州大学学报: 工学版, 2024, 45 (4): 1- 10,29
YANG Shouyi, CHEN Yihang, ZHANG Shuangling, et al Research of mobile edge computing for future mobile communications: a review[J]. Journal of Zhengzhou University: Engineering Science, 2024, 45 (4): 1- 10,29
2 PREMSANKAR G, DI FRANCESCO M, TALEB T Edge computing for the Internet of Things: a case study[J]. IEEE Internet of Things Journal, 2018, 5 (2): 1275- 1284
doi: 10.1109/JIOT.2018.2805263
3 杨文宇, 唐菁敏, 杨飞, 等 车辆边缘计算中联合资源分配和任务卸载方案[J]. 通信技术, 2024, 57 (5): 470- 479
YANG Wenyu, TANG Jingmin, YANG Fei, et al Joint resource allocation and task offloading schemes in vehicle edge computing[J]. Communications Technology, 2024, 57 (5): 470- 479
4 吴文娇, 郭荣佐, 樊相奎 基于DRL的无人机辅助MEC任务卸载算法[J]. 计算机工程与设计, 2024, 45 (9): 2697- 2703
WU Wenjiao, GUO Rongzuo, FAN Xiangkui DRL-based unmanned aerial vehicle assisted MEC offloading algorithm[J]. Computer Engineering and Design, 2024, 45 (9): 2697- 2703
5 DONG S, TANG J, ABBAS K, et al Task offloading strategies for mobile edge computing: a survey[J]. Computer Networks, 2024, 254: 110791
doi: 10.1016/j.comnet.2024.110791
6 BIRHANIE H M, ADEM M O Optimized task offloading strategy in IoT edge computing network[J]. Journal of King Saud University: Computer and Information Sciences, 2024, 36 (2): 101942
doi: 10.1016/j.jksuci.2024.101942
7 赵天祺, 赵洺月, 师越, 等 基于星地协同的低时延任务卸载算法[J]. 无线电通信技术, 2023, 49 (5): 883- 890
ZHAO Tianqi, ZHAO Mingyue, SHI Yue, et al A satellite-ground based low-latency task offloading algorithm[J]. Radio Communications Technology, 2023, 49 (5): 883- 890
8 何茂霖, 多滨, 胡艳梅, 等 基于智能超表面的无人机移动边缘计算综述[J]. 无线电通信技术, 2024, 50 (2): 349- 356
HE Maolin, DUO Bin, HU Yanmei, et al Survey on UAV-enabled mobile edge computing based on reconfigurable intelligent surface[J]. Radio Communications Technology, 2024, 50 (2): 349- 356
9 郭鸿志, 王宇涛, 王佳黛, 等 面向复杂任务的多无人机协同计算资源分配与优化[J]. 无线电通信技术, 2022, 48 (6): 1012- 1018
GUO Hongzhi, WANG Yutao, WANG Jiadai, et al Multi-UAV cooperative computing resource allocation and optimization for complex tasks[J]. Radio Communications Technology, 2022, 48 (6): 1012- 1018
10 JIANG C, LI Y, SU J, et al Research on new edge computing network architecture and task offloading strategy for Internet of Things[J]. Wireless Networks, 2024, 30 (5): 3619- 3631
doi: 10.1007/s11276-020-02516-8
11 刘耿旗, 张旭秀, 马洪源, 等 多边缘节点场景下的计算任务卸载算法[J]. 信息与控制, 2023, 52 (5): 679- 688
LIU Gengqi, ZHANG Xuxiu, MA Hongyuan, et al Computational task offloading algorithms for multi-edge node scenarios[J]. Information and Control, 2023, 52 (5): 679- 688
12 YOU C, HUANG K, CHAE H, et al Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16 (3): 1397- 1411
doi: 10.1109/TWC.2016.2633522
13 ZHANG K, MAO Y, LENG S, et al Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks[J]. IEEE Access, 2016, 4: 5896- 5907
doi: 10.1109/ACCESS.2016.2597169
14 HE Q, WANG R, ZHANG F, et al Design and implementation of user task offloading algorithm[J]. AIP Advances, 2024, 14 (2): 025242
doi: 10.1063/5.0181636
15 夏玮玮, 胡静, 宋铁成 低地球轨道卫星边缘计算场景中任务卸载与资源分配联合优化算法[J]. 通信学报, 2024, 45 (7): 48- 60
XIA Weiwei, HU Jing, SONG Tiecheng Joint optimization algorithm for task offloading and resource allocation in low earth orbit satellites edge computing scenario[J]. Journal on Communications, 2024, 45 (7): 48- 60
16 郭煜 移动边缘计算中带有缓存机制的任务卸载策略[J]. 计算机应用与软件, 2019, 36 (6): 114- 119
GUO Yu Tasks offloading strategy with caching mechanism in mobile margin computing[J]. Computer Applications and Software, 2019, 36 (6): 114- 119
17 TRAN T X, POMPILI D Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (1): 856- 868
doi: 10.1109/TVT.2018.2881191
18 ZHU A, WEN Y Computing offloading strategy using improved genetic algorithm in mobile edge computing system[J]. Journal of Grid Computing, 2021, 19 (3): 38
doi: 10.1007/s10723-021-09578-8
19 龙隆, 刘子辰, 陆在旺, 等 移动边缘网络下服务缓存与资源分配联合优化策略[J]. 通信学报, 2023, 44 (1): 64- 74
LONG Long, LIU Zichen, LU Zaiwang, et al Joint optimization strategy of service cache and resource allocation in mobile edge network[J]. Journal on Communications, 2023, 44 (1): 64- 74
20 代美玲, 刘周斌, 郭少勇, 等 基于终端能耗和系统时延最小化的边缘计算卸载及资源分配机制[J]. 电子与信息学报, 2019, 41 (11): 2684- 2690
DAI Meiling, LIU Zhoubin, GUO Shaoyong, et al A computation offloading and resource allocation mechanism based on minimizing devices energy consumption and system delay[J]. Journal of Electronics and Information Technology, 2019, 41 (11): 2684- 2690
21 JIANG H, DAI X, XIAO Z, et al Joint task offloading and resource allocation for energy-constrained mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22 (7): 4000- 4015
doi: 10.1109/TMC.2022.3150432
22 KIM M, JANG J, CHOI Y, et al Distributed task offloading and resource allocation for latency minimization in mobile edge computing networks[J]. IEEE Transactions on Mobile Computing, 2024, 23 (12): 15149- 15166
doi: 10.1109/TMC.2024.3458185
23 牟洁茹, 何华, 刘聪, 等 基于QoS驱动的多目标优化用户动态关联研究[J]. 郑州大学学报: 理学版, 2022, 54 (2): 56- 60
MU Jieru, HE Hua, LIU Cong, et al Research on dynamic association of multi-objective optimization users driven by QoS[J]. Journal of Zhengzhou University: Natural Science Edition, 2022, 54 (2): 56- 60
24 苏恭超, 陈彬, 林晓辉, 等 异构蜂窝网络中一种基于匈牙利算法的用户关联方法[J]. 电子科技大学学报, 2017, 46 (2): 346- 351
SU Gongchao, CHEN Bin, LIN Xiaohui, et al User association in heterogeneous cellular networks via the Hungarian method[J]. Journal of University of Electronic Science and Technology of China, 2017, 46 (2): 346- 351
25 柴蓉, 王令, 陈明龙, 等 基于时延优化的蜂窝D2D通信联合用户关联及内容部署算法[J]. 电子与信息学报, 2019, 41 (11): 2565- 2570
CHAI Rong, WANG Ling, CHEN Minglong, et al Joint clustering and content deployment algorithm for cellular D2D communication based on delay optimization[J]. Journal of Electronics and Information Technology, 2019, 41 (11): 2565- 2570
[1] 李姣军,喻涛,周继华,杨凡,赵涛,吴天舒,马兹林. 动态不确定场景下认知工业物联网的资源分配策略[J]. 浙江大学学报(工学版), 2024, 58(5): 960-966.
[2] 刘翀赫,余官定,刘胜利. 基于无线D2D网络的分层联邦学习[J]. 浙江大学学报(工学版), 2023, 57(5): 892-899.
[3] 周欣彤,肖琨. 综合上下行链路的无线能量收集协作网络资源分配[J]. 浙江大学学报(工学版), 2023, 57(12): 2544-2552.
[4] 陈俊杰,李洪均,曹张华. 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报(工学版), 2021, 55(9): 1782-1787.
[5] 孙晨,吴哲奕,袁建涛. 电力物联网中节能的免许可D2D接入算法设计[J]. 浙江大学学报(工学版), 2020, 54(10): 1867-1873.
[6] 刘一鸣,盛文. 相控阵雷达搜索和跟踪资源博弈分配策略[J]. 浙江大学学报(工学版), 2020, 54(10): 1883-1891.
[7] 白如帆, 雷建坤, 张亮. 面向大数据试验场应用的资源优化分配[J]. 浙江大学学报(工学版), 2017, 51(6): 1225-1232.
[8] 张欣欣, 徐恪, 钟宜峰, 苏辉. 网络服务提供商合作行为的演化博弈分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1214-1224.