Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (6): 1266-1274    DOI: 10.3785/j.issn.1008-973X.2024.06.016
电气工程     
非最小相位的单电感双输出 Buck-Boost变换器的复合控制方法
皇金锋(),李啸天
陕西理工大学 电气工程学院,陕西 汉中 723001
Composite control method for non-minimum phase single inductance dual output Buck-Boost converter
Jinfeng HUANG(),Xiaotian LI
School of Electrical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
 全文: PDF(2067 KB)   HTML
摘要:

单电感双输出Buck-Boost (SIDO Buck-Boost)变换器在电感电流连续模式(CCM)下工作存在交叉影响以及非最小相位特性的问题. 为了解决上述问题,提出基于储能函数的扩张状态观测器(ESO)的改进非奇异快速终端滑模(NFTSM)和自抗扰控制(ADRC)相结合的控制策略. 设计主路控制器,对系统的传递函数进行拟合得到ADRC范式,利用该范式对主路进行解耦控制.设计支路控制器,采用改进型ESO对储能函数进行观测,并将观测值反馈补偿到非奇异快速终端滑模控制律中,达到支路解耦的效果. 为了抑制滑模控制的抖振问题,对趋近律进行改进. 利用Lyapunov理论证明系统稳定性. 基于硬件在环(HIL)实验平台进行实验验证. 结果表明,所提控制策略与PI控制策略以及基于ESO的滑模控制策略相比,在超调量和响应时间上具有较好的效果.

关键词: 单电感双输出Buck-Boost变换器非奇异快速终端滑模控制自抗扰控制改进滑模趋近律    
Abstract:

An control strategy combining improved non-singular fast terminal sliding mode (NFTSM) and active disturbance rejection control (ADRC) based on the extended state observer (ESO) of energy storage function was proposed, in view of the cross-influence and non-minimum phase characteristics of single inductance dual output Buck-Boost (SIDO Buck-Boost) converters operating in continuous inductance current mode (CCM). Firstly, the main controller was designed, and the ADRC normal form was obtained by fitting the transfer function of the system, which was used to decouple the main path. Secondly, the branch controller was designed, and the improved ESO was used to observe the energy function, and the observed value was compensated into the non-singular fast terminal sliding mode control law to achieve the branch decoupling effect. The approach law was improved in order to suppress the chattering problem of sliding mode control. Then, the stability of the system was proved by the Lyapunov theory. Finally, experiments were carried out based on the hardware-in-the-loop (HIL) experimental platform, and results showed that the proposed control strategy had better effect on overshoot and response time than PI control strategy and ESO-based sliding mode control strategy.

Key words: single inductance dual output    Buck-Boost converter    nonsingular fast terminal sliding mode control    self disturbance rejection control    improved sliding mode approach law
收稿日期: 2023-06-01 出版日期: 2024-05-25
CLC:  TM 46  
基金资助: 陕西省自然科学基金资助项目(2023-JC-YB-442).
作者简介: 皇金锋(1978—),男,教授,硕导,从事电力电子变换器的控制技术研究. orcid.org/0000-0003-4846-3699. E-mail:jfhuang2000@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
皇金锋
李啸天

引用本文:

皇金锋,李啸天. 非最小相位的单电感双输出 Buck-Boost变换器的复合控制方法[J]. 浙江大学学报(工学版), 2024, 58(6): 1266-1274.

Jinfeng HUANG,Xiaotian LI. Composite control method for non-minimum phase single inductance dual output Buck-Boost converter. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1266-1274.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.016        https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1266

图 1  CCM SIDO Buck-Boost变换器电路拓扑及工作时序
图 2  SIDO Buck-Boost变换器的控制框图
图 3  主路控制框图
图 4  支路控制框图
图 5  支路a负载扰动时不同控制策略实验对比
图 6  支路b负载扰动时不同控制策略实验对比
图 7  输入电压扰动时不同控制策略实验对比
1 MILAD R, MAJID M, AMIR G, et al Lyapunov-based control strategy for a single-input dual-output three-level DC/DC converter[J]. IEEE Transactions on Industrial Electronics, 2022, 70 (10): 10486- 10495
2 WANG Y, XU J P, QIN F B, et al A capacitor current and capacitor voltage ripple controlled SIDO CCM buck converter with wide load range and reduced cross regulation[J]. IEEE Transactions on Industrial Electronics, 2021, 69 (1): 270- 281
3 MA D S, KI W H, TSUI C Y A pseudo-CCM/DCM SIMO switching converter with freewheel switching[J]. IEEE Journal of Solid-State Circuits, 2003, 38 (6): 1007- 1014
4 JIN W J, LEE A, TAN S C, et al Single-inductor multiple-output inverter with precise and independent output voltage regulation[J]. IEEE Transactions on Power Electronics, 2020, 35 (10): 11222- 11234
5 ZAHRA S, HERIS P C, MANTOOTH H A Modular expandable multiinput multioutput (MIMO) high step-up transformerless DC-DC converter[J]. IEEE Access, 2022, 10: 53124- 53142
6 NAYAK G, NATH S Choosing coefficient of coupling for coupled SIDO converters[J]. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3 (4): 1010- 1019
7 NUPUR, NATH S Effect of coupling on discontinuous conduction mode of coupled inductor SIDO Boost Converter[J]. IEEE Transactions on Power Electronics, 2022, 37 (5): 4991- 5002
8 李慧慧, 皇金锋 单电感双输出Buck-Boost变换器的非最小相位特性分析及控制策略[J]. 电工技术学报, 2023, 38 (14): 3875- 3887
LI Huihui, HUANG Jinfeng Analysis of non-minimum phase characteristics and control strategies for single-inductor dualoutput buck-boost converters[J]. Transactions of China Electrotechnical Society, 2023, 38 (14): 3875- 3887
9 ZHOU S H, ZHOU G H, LIU X S, et al Dynamic freewheeling control for SIDO buck converter with fast transient performance, minimized cross-regulation, and high efficiency[J]. IEEE Transactions on Industrial Electronics, 2022, 70 (2): 1467- 1477
10 NAYAK G, NATH S Unified model of peak current mode controlled coupled SIDO converters[J]. IEEE Transactions on Industrial Electronics, 2022, 60 (11): 11156- 11164
11 皇金锋, 张世欣, 杨艺 基于扩张状态观测器的单电感双输出Buck变换器滑模解耦控制[J]. 湖南大学学报:自然科学版, 2023, 50 (2): 138- 149
HUANG Jinfeng, ZHANG Shixing, YANG Yi Sliding mode decoupling control of single inductor dual output buck converter based on extended state observer[J]. Journal of Hunan University: Natural Sciences, 2023, 50 (2): 138- 149
12 吴忠, 刘朝辉 基于电流模式的DC/DC升压变换器非线性PI控制[J]. 中国电机工程学报, 2011, 31 (33): 31- 36
WU Zhong, LIU Zhaohui Nonlinear PI control of DC/DC boost power converters based on current mode[J]. Proceedings of the CSEE, 2011, 31 (33): 31- 36
13 舒莹. 双向DC/DC变换器控制策略研究[D]. 马鞍山: 安徽工业大学, 2021.
SHU Ying. Research on bidirectional DC/DC converter control strategy [D]. Ma'anShan: Anhui University of Technology, 2021.
14 JESUS L F, JOSE A J, ARTURO H M, et al Sliding mode control based on linear extended state observer for DC-to-DC buck-boost power converter system with mismatched disturbances[J]. IEEE Transactions on Industry Applications, 2022, 58 (1): 940- 950
15 BLANCAA M T, ABDELALI E A, ENRIC V I, et al Sliding-mode control of a boost converter under constant power loading conditions[J]. IET Power Electronics, 2019, 12 (3): 521- 529
16 乐江源, 谢运祥, 洪庆祖, 等 Boost变换器精确反馈线性化滑模变结构控制[J]. 中国电机工程学报, 2011, 31 (30): 16- 23
LE Jiangyuan, XIE Yunxiang, HONG Qingzu, et al Sliding mode control of boost converter based on exact feedback linearization[J]. Proceedings of the CSEE, 2011, 31 (30): 16- 23
17 SONG L P, HUANG J P, LIANG Qin, et al Trajectory tracking strategy for sliding mode control with double closed-loop for lawn mowing robot based on ESO[J]. IEEE Acceess, 2023, 11: 1867- 1882
18 韩京清 自抗扰控制器及其应用[J]. 控制与决策, 1998, (1): 19- 23
HAN Jingqing Auto disturbances rejection controller and its applications[J]. Control and Decision, 1998, (1): 19- 23
doi: 10.3321/j.issn:1001-0920.1998.01.005
19 刘翔, 李东海, 姜学智, 等 不稳定对象及非最小相位对象的自抗扰控制仿真研究[J]. 控制与决策, 2001, (4): 420- 424
LIU Xiang, LI Donghai, JIANG Xuezhi, et al Simulation study on auto-disturbance-rejection control for unstable systems and non-minimum phase systems[J]. Control and Decision, 2001, (4): 420- 424
20 ZHANG Y L, ZHU M, LI D H, et al ADRC dynamic stabilization of an unstable heat equation[J]. IEEE Transactions on Automatic Control, 2020, 65 (10): 4424- 4429
21 GAO Z Q. Scaling and bandwidth-parameterization based controller tuning [C]// Proceedings of the 2003 American Control Conference . Denver: [s. n.], 2003: 4989−4996.
22 孙佃升, 章跃进 线性扩张状态观测器的改进及观测精度分析[J]. 国防科技大学学报, 2017, 39 (6): 111- 117
SUN Diansheng, ZHANG Yuejin Improvement and observation accuracy analysis of linear extended state observer[J]. Journal of National University of Defense Technology, 2017, 39 (6): 111- 117
doi: 10.11887/j.cn.201706017
23 MARKS G, SHTESSEL Y, GRATT H, et al. Effects of high order sliding mode guidance and observers on hit-tokill interceptions [C] // AIAA Guidance, Navigation, and Control Conference and Exhibit . San Francisco: [s. n.], 2005: 5967.
24 杨万禄, 梁立华, 滕桂兰 非线性系统稳定性问题分析[J]. 天津大学学报, 1995, (6): 759- 764
YANG Wanlu, LIANG Lihua, TENG Guilan Stability analysis for nonlinear systems[J]. Journal of Tianjin University, 1995, (6): 759- 764
[1] 张世玉,陈东生,宋颖慧. 基于自抗干扰的装配机器人阻抗控制技术[J]. 浙江大学学报(工学版), 2022, 56(9): 1876-1881.
[2] 李洋,齐蓉,代明光. 补偿因子可调逆变器电压外环线性自抗扰控制[J]. 浙江大学学报(工学版), 2021, 55(7): 1279-1288.
[3] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[4] 檀盼龙, 孙青林, 陈增强. 自抗扰技术在动力翼伞轨迹跟踪控制中的应用[J]. 浙江大学学报(工学版), 2017, 51(5): 992-999.
[5] 刘刚, 靳立强, 王熠. 乘用车稳定性自抗扰控制策略[J]. 浙江大学学报(工学版), 2016, 50(12): 2289-2296.
[6] 班伟, 陶国良,孟德远, 刘昊, 钱鹏飞. 锥阀式气动比例压力阀压力控制器的设计[J]. 浙江大学学报(工学版), 2015, 49(5): 873-879.
[7] 王尧尧, 顾临怡, 高 明, 贾现军, 朱康武. 水下运载器非奇异快速终端滑模控制[J]. 浙江大学学报(工学版), 2014, 48(9): 1541-1551.
[8] 盖江涛, 黄庆, 黄守道, 刘旺, 周滔滔, 潘小清. 基于模型补偿的永磁同步电机自抗扰控制[J]. J4, 2014, 48(4): 581-588.
[9] 刘子建, 吴敏, 陈鑫, 王春生. 永磁同步电机混合非线性控制策略[J]. J4, 2010, 44(7): 1303-1307.
[10] 邹俊 傅新 杨华勇. 精轧活套控制系统研究[J]. J4, 2007, 41(12): 2052-2057.
[11] 王维锐 潘双夏 王芳 杨礼康. 磁流变液减振器模拟工况实验台控制策略研究[J]. J4, 2005, 39(12): 1915-1919.