计算机与控制工程 |
|
|
|
|
修复缺陷嫌疑区域的无监督磁瓦表面缺陷检测 |
唐善成( ),逯建辉,张莹,金子成,赵安新 |
1. 西安科技大学 通信与信息工程学院,陕西 西安 710054 |
|
Unsupervised surface defect detection of magnetic tile for repair of suspected area defects |
Shancheng TANG( ),Jianhui LU,Ying ZHANG,Zicheng JIN,Anxin ZHAO |
1. College of Communication and Information Technology, Xi’an University of Science and Technology, Xi’an 710054, China |
引用本文:
唐善成,逯建辉,张莹,金子成,赵安新. 修复缺陷嫌疑区域的无监督磁瓦表面缺陷检测[J]. 浙江大学学报(工学版), 2024, 58(4): 718-728.
Shancheng TANG,Jianhui LU,Ying ZHANG,Zicheng JIN,Anxin ZHAO. Unsupervised surface defect detection of magnetic tile for repair of suspected area defects. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 718-728.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.007
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I4/718
|
1 |
HUANG Y, QIU C, YUAN K Surface defect saliency of magnetic tile[J]. Visual Computer, 2020, 36: 85- 96
doi: 10.1007/s00371-018-1588-5
|
2 |
CUI L, TIANG X, XU M, et al SDDNet: a fast and accurate network for surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2505713
|
3 |
LIU W, ZHANG J, SU Z, et al Binary neural network for automated visual surface defect detection[J]. Sensors, 2021, 21 (20): 6868
doi: 10.3390/s21206868
|
4 |
TANG C, FENG X, WEN H, et al Semantic segmentation network for surface defect detection of automobile wheel hub fusing high-resolution feature and multi-scale feature[J]. Applied Sciences, 2021, 11 (22): 10508
doi: 10.3390/app112210508
|
5 |
LING X, WU Y, ALI R, et al Magnetic tile surface defect detection methodology based on self-attention and self-supervised learning[J]. Computational Intelligence and Neuroscience, 2022, 2022: 3003810
|
6 |
刘培勇, 董洁, 谢罗峰, 等 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报: 工学版, 2023, 53 (5): 1449- 1457 LIU Peiyong, DONG Jie, XIE Luofeng, et al Surface defect detection algorithm of magnetic tiles based on multi-branch convolutional neural network[J]. Journal of Jilin University: Engineering and Technology Edition, 2023, 53 (5): 1449- 1457
|
7 |
卞佰成, 陈田, 吴入军, 等 基于改进YOLOv3的印刷电路板缺陷检测算法[J]. 浙江大学学报: 工学版, 2023, 57 (4): 735- 743 BIAN Baicheng, CHEN Tian, WU Rujun, et al Improved YOLOv3-based defect detection algorithm for printed circuit board[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (4): 735- 743
|
8 |
HOU W, JING H. RC-YOLOv5s: for tile surface defect detection [EB/OL]. (2023-03-01) [2023-05-18]. https://link.springer.com/content/pdf/10.1007/s00371-023-02793-2.pdf.
|
9 |
胡广华, 王宁, 何文亮, 等 基于图像修复的无监督表面缺陷检测方法[J]. 华南理工大学学报: 自然科学版, 2021, 49 (7): 76- 85 HU Guanghua, WANG Ning, HE Wenliang, et al Unsupervised surface defect detection method based on image inpainting[J]. Journal of South China University of Technology: Natural Science Edition, 2021, 49 (7): 76- 85
|
10 |
KINGMA D P, WELLING M. Auto-encoding variational bayes [EB/OL]. (2022-12-10) [2023-05-18]. https://arxiv.org/pdf/1312.6114.pdf.
|
11 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [EB/OL]. (2014-06-10) [2023-03-20]. https://arxiv.org/pdf/1406.2661.pdf.
|
12 |
MI Z, JIANG X, SUN T, et al GAN-generated image detection with self-attention mechanism against GAN generator defect[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14 (5): 969- 981
doi: 10.1109/JSTSP.2020.2994523
|
13 |
GUO Y, ZHONG L, QIU Y, et al Using ISU-GAN for unsupervised small sample defect detection[J]. Scientific Reports, 2022, 12: 11604
doi: 10.1038/s41598-022-15855-7
|
14 |
WEI C, LIANG J, LIU H, et al Multi-stage unsupervised fabric defect detection based on DCGAN[J]. The Visual Computer, 2023, 39: 6655- 6671
doi: 10.1007/s00371-022-02754-1
|
15 |
景海钊, 史江林, 邱梦哲, 等 基于密集残差块生成对抗网络的空间目标图像超分辨率重建[J]. 光学精密工程, 2022, 30 (17): 2155- 2165 JING Haizhao, SHI Jianglin, QIU Mengzhe, et al Super-resolution reconstruction method for space target images based on dense residual block-based GAN[J]. Optics and Precision Engineering, 2022, 30 (17): 2155- 2165
doi: 10.37188/OPE.20223017.2155
|
16 |
唐善成, 陈明, 王瀚博, 等 采用变分自编码器的无监督压敏电阻表面缺陷检测[J]. 计算机集成制造系统, 2022, 28 (5): 1337- 1351 TANG Shancheng, CHEN Ming, WANG Hanbo, et al Unsupervised varistor surface defect detection based on variational autoencoder[J]. Computer Integrated Manufacturing Systems, 2022, 28 (5): 1337- 1351
|
17 |
WEI W, DENG D, ZENG L, et al Real-time implementation of fabric defect detection based on variational automatic encoder with structure similarity[J]. Journal of Real-Time Image Processing, 2021, 18: 807- 823
doi: 10.1007/s11554-020-01023-5
|
18 |
LIU W, LIU Z, WANG H, et al An automated defect detection approach for catenary rod-insulator textured surfaces using unsupervised learning[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (10): 8411- 8423
|
19 |
HE K, CHEN X, XIE S, et al. Masked autoecoder are scalable vision learners [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Patern Recognition . New Orleans: IEEE, 2022: 15979–15988.
|
20 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 ×16 words: Transformers for image recognition at scale [EB/OL]. (2021-06-03) [2023-05-18]. https://arxiv.org/pdf/2010.11929.pdf.
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [EB/OL]. (2023-08-02) [2023-05-18]. https://arxiv.org/pdf/1706.03762v1.pdf.
|
22 |
MONTABONE S, SOTO A Human detection using a mobile platform and novel features derived from a visual saliency mechanism[J]. Image and Vision Computing, 2010, 28 (3): 391- 402
doi: 10.1016/j.imavis.2009.06.006
|
23 |
LI X, ZHENG Y, CHEN B, et al Dual attention-based industrial surface defect detection with consistency loss[J]. Sensors, 2022, 22 (14): 5141
doi: 10.3390/s22145141
|
24 |
LIU T, YE W A semi-supervised learning method for surface defect classification of magnetic tiles[J]. Machine Vision and Applications, 2022, 33: 35
doi: 10.1007/s00138-022-01286-x
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|