Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (11): 2355-2363    DOI: 10.3785/j.issn.1008-973X.2024.11.017
土木工程、交通工程     
新型UHPC-NC组合盖梁的结构设计与试验分析
刘慈军1(),李立峰2,*(),邵旭东2,陈涛1,张冠华3,王佳伟3,杨华振4,赵亚龙4
1. 宁波市高等级公路建设管理中心,浙江 宁波 315192
2. 湖南大学 土木工程学院,湖南 长沙 410082
3. 辽宁省交通规划设计院有限责任公司,辽宁 沈阳 110111
4. 中国公路工程咨询集团有限公司,北京 100089
Structural design and experimental analysis of new UHPC-NC composite bent cap
Cijun LIU1(),Lifeng LI2,*(),Xudong SHAO2,Tao CHEN1,Guanhua ZHANG3,Jiawei WANG3,Huazhen YANG4,Yalong ZHAO4
1. Ningbo High-Grade Highway Construction Management Center, Ningbo 315192, China
2. College of Civil Engineering, Hunan University, Changsha 410082, China
3. Liaoning Provincial Communication Planning and Design Institute Limited Company, Shenyang 110111, China
4. China Highway Engineering Consulting Corporation, Beijing 100089, China
 全文: PDF(2785 KB)   HTML
摘要:

为了实现城市高架桥或高速公路改扩建工程超大规模盖梁的装配化、快速化施工,提出由钢板和超高性能混凝土(UHPC)制作的外壳及现浇核心混凝土(NC)组成的新型UHPC-NC组合盖梁.为了探究外壳UHPC和钢模板厚度对受力性能的影响,对不同UHPC和钢板厚度进行参数分析. 分析结果表明,在自重作用下,外壳的刚度受UHPC和钢板厚度及其比例的共同影响. 当张拉预应力和浇筑混凝土时,UHPC和钢板越厚,外壳的受力性能越好,但是经济性会降低,建议采用UHPC厚70 mm,钢板厚6 mm的方案. 为了验证该方案的可行性和安全性,设计1∶2.5的缩尺模型,开展静力加载试验. 结果表明,新型UHPC-NC组合盖梁的受力性能好,安全储备较高,可以为盖梁的装配化施工提供参考.

关键词: 盖梁装配化施工超高性能混凝土(UHPC)方案设计    
Abstract:

A new composite bent cap consisting of a shell made of steel plate and ultra-high-performance concrete (UHPC) and cast-in-place core normal concrete (NC) was proposed in order to realize the assembly and rapid construction of ultra-large-scale bent cap for urban viaducts or highway reconstruction and expansion projects. Parametric analysis of different UHPC and steel plate thickness was conducted in order to analyze the influence of the thickness of UHPC and steel mold plate on its stress performance. Results showed that the stiffness of the shell was affected by the thickness of UHPC and steel plate and their ratio together under the action of self-weight. The thicker the UHPC and steel plate are, the better the stress performance of the shell is, but the economy will be reduced when tensioning prestress and casting concrete. It is recommended to use UHPC thickness of 70 mm and steel plate thickness of 6 mm. A piece of 1∶2.5 scaled-down model was designed and static loading test was conducted in order to verify the feasibility and safety of this scheme. Results show that the new UHPC-NC composite bent cap has good force performance and high safety reserve, which can provide reference for the assembly construction of bent cap.

Key words: bent cap    assembly construction    ultra-high-performance concrete (UHPC)    scheme design
收稿日期: 2023-09-06 出版日期: 2024-10-23
CLC:  TU 398  
基金资助: 国家自然科学基金资助项目(51978257, 52278176).
通讯作者: 李立峰     E-mail: 1171130497@qq.com;lilifeng@hnu.edu.cn
作者简介: 刘慈军(1971—),男,正高级工程师,从事高速公路建设、桥梁新材料与新结构的研究. orcid.org/0009-0001-8238-8349. E-mail:1171130497@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘慈军
李立峰
邵旭东
陈涛
张冠华
王佳伟
杨华振
赵亚龙

引用本文:

刘慈军,李立峰,邵旭东,陈涛,张冠华,王佳伟,杨华振,赵亚龙. 新型UHPC-NC组合盖梁的结构设计与试验分析[J]. 浙江大学学报(工学版), 2024, 58(11): 2355-2363.

Cijun LIU,Lifeng LI,Xudong SHAO,Tao CHEN,Guanhua ZHANG,Jiawei WANG,Huazhen YANG,Yalong ZHAO. Structural design and experimental analysis of new UHPC-NC composite bent cap. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2355-2363.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.017        https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2355

图 1  UHPC-NC组合盖梁的示意图
图 2  盖梁的总体布置图
图 3  UHPC-NC组合盖的梁杆系模型
图 4  盖梁外壳的上缘应力
方案项目数量综合单价/元小计/元总价/元
原普通混凝土盖梁C50混凝土215.0 m31350290 250786 837
HRB400钢筋33.0 t6500214 500
$\varPhi $15.24 mm钢绞线11.2 t12500140 000
地基处理119 m227332 487
支架1370 m380109 600
组合盖梁UHPC23.0 m310000230 000767 075
C50混凝土150.5 m31350203 175
Q355钢材13.9 t8500118 150
HRB400钢筋9.5 t650061 750
$\varPhi $15.24 mm钢绞线11.2 t12500140 000
运输吊装(90 t)11400014 000
表 1  盖梁的经济性分析表
图 5  盖梁的截面布置
图 6  盖梁外壳的梁端位移
图 7  盖梁外壳的上、下缘应力
图 8  盖梁外壳截面的形心位置
图 9  核心混凝土对UHPC外壳的压力
图 10  B70-6有限元模型
图 11  B70-6的空间分析结果
图 12  各方案盖梁外壳的空间分析结果
图 13  各方案盖梁的经济性分析结果
图 14  模型梁的加载布置图
图 15  模型梁的加载测试现场
图 16  加载点的荷载-位移曲线
图 17  典型裂缝的分布
图 18  主筋荷载-应变曲线
类型Mu/(kN·m)Vu/kN
设计值9 495.13 151.7
实验值12 285.54 459.0
比值1.291.41
表 2  盖梁根部截面承载力的对比
1 肖绪文, 曹志伟, 刘星, 等 我国建筑装配化发展的现状、问题与对策[J]. 建筑结构, 2019, 49 (19): 1- 4
XIAO Xuwen, CAO Zhiwei, LIU Xing, et al Status, problems and countermeasures of prefabricated buildings in China[J]. Building Structure, 2019, 49 (19): 1- 4
2 项贻强, 竺盛, 赵阳, 等 快速施工桥梁的研究进展[J]. 中国公路学报, 2018, 31 (12): 1- 27
XIANG Yiqiang, ZHU Sheng, ZHAO Yang, et al Research and development on accelerated bridge construction technology[J]. China Journal of Highway and Transport, 2018, 31 (12): 1- 27
3 李中南, 朱海波, 赵阳, 等 装配式桥墩温度应力分析与裂纹控制[J]. 浙江大学学报: 工学版, 2021, 55 (1): 46- 54
LI Zhongnan, ZHU Haibo, ZHAO Yang, et al Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (1): 46- 54
4 AZMEE N M, SHAFIQ N. Ultra-high performance concrete: from fundamental to applications [J]. Case Studies in Construction Materials , 2018, 9(12): 1-21.
5 刘路明, 方志, 刘福财, 等 室内环境下UHPC的收缩徐变试验和预测[J]. 中国公路学报, 2021, 34 (8): 35- 44
LIU Luming, FANG Zhi, LIU Fucai, et al Experimental study on the shrinkage and creep of UHPC in indoor environments[J]. China Journal of Highway and Transport, 2021, 34 (8): 35- 44
6 BAJABER M A, HAKEEM I Y UHPC evolution, development, and utilization in construction: a review[J]. Journal of Materials Research and Technology, 2021, 10 (1): 1058- 1074
7 邵旭东, 樊伟, 黄政宇, 等 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54 (1): 1- 13
SHAO Xudong, FAN Wei, HUANG Zhengyu, et al Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54 (1): 1- 13
8 邵旭东, 蔡文涌, 曹君辉, 等 型钢-UHPC轻型组合桥面板及其抗弯性能研究[J]. 土木工程学报, 2024, 57 (6): 152- 168
SHAO Xudong, CAI Wenyong, CAO Junhui, et al Research on flexural performance of section steel-UHPC lightweight composite bridge deck[J]. China Civil Engineering Journal, 2024, 57 (6): 152- 168
9 邵旭东, 邵宗暄, 怀臣子, 等 UHPC矮肋桥面板抗弯性能研究[J]. 湖南大学学报: 自然科学版, 2022, 49 (11): 33- 44
SHAO Xudong, SHAO Zongxuan, HUAI Chenzi, et al Research on flexural performance of UHPC lowly ribbed deck panel[J]. Journal of Hunan University: Natural Sciences, 2022, 49 (11): 33- 44
10 李小鹏. 装配式盖梁拼装施工技术研究[J]. 科技与创新, 2023, 222(6): 68-70.
LI Xiaopeng. Research on assembling construction technology of assembled [J]. Science and Technology and Innovation , 2023, 222(6): 68-70.
11 何晓阳, 项贻强, 邢骋 混凝土桥梁下部结构病害分析与加固[J]. 重庆交通大学学报: 自然科学版, 2013, 32 (Suppl.1): 807- 811
HE Xiaoyang, XIANG Yiqiang, XING Cheng Disease analysis and reinforcement of concrete bridge substructure[J]. Journal of Chongqing Jiaotong University: Natural Science, 2013, 32 (Suppl.1): 807- 811
12 李立峰, 唐金良, 胡方健, 等 全预制轻型预应力UHPC薄壁盖梁抗剪性能试验[J]. 中国公路学报, 2020, 33 (8): 144- 158
LI Lifeng, TANG Jinliang, HU Fangjian, et al Experimental on shear behavior of prefabricated light weight thin-walled UHPC bent cap[J]. China Journal of Highway and Transport, 2020, 33 (8): 144- 158
13 叶萌, 姚志立 全预制轻型UHPC盖梁设计方案及模型试验[J]. 公路工程, 2021, 46 (4): 84- 90
YE Meng, YAO Zhili Experimental study on shear behavior of prestressed UHPC-T beam[J]. Highway Engineering, 2021, 46 (4): 84- 90
14 YE Meng, LI Lifeng, HU Fangjian, et al UHPC-based precast large-cantilevered thin-walled bent caps: design and experiments[J]. Engineering Structures, 2022, 272: 114909
doi: 10.1016/j.engstruct.2022.114909
15 CHUNG C H, LEE J H, KWON S H Proposal of a new partially precast pier cap system and experimental verification of its structural performance[J]. KSCE Journal of Civil Engineering, 2018, 22 (7): 2362- 2370
doi: 10.1007/s12205-017-1268-4
16 李嘉维, 夏樟华, 孙明松, 等 UHPC模壳-RC叠合盖梁受力性能试验[J]. 中国公路学报, 2021, 34 (8): 157- 167
LI Jiawei, XIA Zhanghua, SUN Mingsong, et al Experimental study on mechanical performance of UHPC formwork-RC composite cap beam[J]. China Journal of Highway and Transport, 2021, 34 (8): 157- 167
17 孙明松, 李嘉维, 夏坚, 等 半预制UHPC外壳叠合盖梁试设计研究[J]. 水利与建筑工程学报, 2020, 18 (4): 105- 110
SUN Mingsong, LI Jiawei, XIA Jian, et al Trial-design of semi-prefabricated UHPC shell composite cap beam[J]. Journal of Water Resources and Architectural Engineering, 2020, 18 (4): 105- 110
18 李长春, 卓卫东, 孙作轩, 等 牛腿式接缝分段预制拼装盖梁的受力性能[J]. 哈尔滨工程大学学报, 2023, 44 (8): 1328- 1335
LI Changchun, ZHUO Weidong, SUN Zuoxuan, et al Static behavior of segmental precast assembled cap beam with corbel joints[J]. Journal of Harbin Engineering University, 2023, 44 (8): 1328- 1335
19 中华人民共和国交通运输部. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG 3362-2018[S]. 北京: 人民交通出版社, 2015.
20 AFNOR. National addition to Eurocode 2-design of concrete structures: specific rules for ultra-high performance fibre-reinforced concrete (UHPFRC): NF P 18-710 [S]. Paris: Association Francaise de Normalisation, 2016: 32-54.
21 中华人民共和国交通运输部. 公路钢结构桥梁设计规范: JTG-D64—2015 [S]. 北京: 人民交通出版社, 2015.
22 AL-OSTA M A, ISA M N, BALUCH M H, et al Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete[J]. Construction and Building Materials, 2017, 134 (1): 279- 296
[1] 邓舒文,邵旭东,晏班夫,邱明红. 轻型组合桥梁负弯矩区接缝抗弯性能试验[J]. 浙江大学学报(工学版), 2024, 58(2): 399-412.
[2] 邓明科,靳梦娜,郭莉英,马福栋,刘华政. 超高性能混凝土连接装配式柱抗震性能试验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 1995-2006.
[3] 李中南,朱海波,赵阳,罗雪,徐荣桥. 装配式桥墩温度应力分析与裂纹控制[J]. 浙江大学学报(工学版), 2021, 55(1): 46-54.
[4] 罗军,邵旭东,曹君辉,樊伟,裴必达. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920.
[5] 萨日娜,张树有,裘乐淼,张利春. 基于传动可供性评价的机械系统方案设计方法[J]. 浙江大学学报(工学版), 2020, 54(11): 2179-2189.
[6] 叶居东, 杨贞军, 刘国华, 姚勇. 超高性能混凝土-螺旋钢纤维拉拔力的解析解及实验验证[J]. 浙江大学学报(工学版), 2018, 52(10): 1911-1918.
[7] 周懿, 钟崴, 谢金芳, 童水光. 过程型机械系统的方案设计模型[J]. J4, 2012, 46(8): 1526-1533.
[8] 冯毅雄,宋轩,谭建荣,丁力平. 基于K-WFA的机械产品运动方案设计求解[J]. J4, 2012, 46(3): 515-523.
[9] 林晓华,冯毅雄,谭建荣. 产品方案设计约束模型及其演化博弈算法求解[J]. J4, 2012, 46(3): 533-541.
[10] 麦泽宇, 冯毅雄, 谭建荣, 魏喆. 基于基因模型的机构变异方案设计[J]. J4, 2010, 44(9): 1629-1636.
[11] 钟崴 童水光. 锅炉智能CAD的技术和方法研究[J]. J4, 2006, 40(4): 572-576.