Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1257-1266    DOI: 10.3785/j.issn.1008-973X.2022.06.025
电气工程     
基于分离补偿网络的IPT系统功率扩容策略
薄强1,2(),王丽芳1,2,3,*(),张玉旺1,3
1. 中国科学院电工研究所,北京 100190
2. 中国科学院大学,北京 100049
3. 中国科学院电力电子与电气驱动重点实验室,北京 100190
Power expansion strategy of IPT system based on separated compensation network
Qiang BO1,2(),Li-fang WANG1,2,3,*(),Yu-wang ZHANG1,3
1. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of Power Electronics and Electric Drives, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(2955 KB)   HTML
摘要:

将感应电能传输(IPT)系统的补偿网络分离并加入各并联逆变器中,用以解决功率扩容和环流问题.分析采用单逆变器拓扑和功率扩容拓扑的IPT系统数学模型. 设计各并联逆变器的补偿网络参数,推导功率扩容系统的功率与效率表达式. 分析各并联逆变器在驱动不同步时的环流回路,给出零电压开关(ZVS)控制策略. 搭建1.2 kW 基于分离补偿网络的IPT系统功率扩容装置,进行实验验证. 实验结果表明,各并联逆变器的输出功率比约为1∶2,均实现了ZVS,功率扩容系统直流到直流的整体传输效率为92.53%,环流幅值为0.2 A,证明了所提功率扩容拓扑的实用性和有效性.

关键词: 感应电能传输(IPT)功率扩容零电压开关(ZVS)驱动不同步环流抑制补偿网络参数设计    
Abstract:

The compensation network of the inductive power transfer (IPT) system was separated and added to each parallel inverter to solve the power expansion and circulating current problems. Firstly, the mathematical models of the IPT system with single-inverter topology and power expansion topology were analyzed. Secondly, the compensation network parameters of each parallel inverter were designed, and the power and efficiency expressions of the power expansion system were also derived. Then, the circulating current of each parallel inverter was analyzed when the drives were asynchronous, and the zero-voltage-switch (ZVS) control strategy was given. Finally, a 1.2 kW IPT system power expansion device based on the separation compensation network was built for experimental verification. Experimental results showed that the ratio of the output power of each parallel inverter was about 1∶2 and all of them achieve ZVS operation, and the overall transmission efficiency from DC to DC of the power expansion system was 92.53% while the amplitude of the circulating current was 0.2 A, which proved the practicality and effectiveness of the proposed power expansion topology.

Key words: inductive power transfer (IPT)    power expansion    zero-voltage-switch (ZVS)    drive asynchrony    circulating current suppression    parameter design of compensation network
收稿日期: 2021-06-03 出版日期: 2022-06-30
CLC:  TM 72  
基金资助: 国家重点研发计划资助项目(2018YFB0106300);国家自然科学基金资助项目(51807188);中国科学院战略性先导科技专项(A类)资助项目(XDA22010403)
通讯作者: 王丽芳     E-mail: boqiang@mail.iee.ac.cn;wlf@mail.iee.ac.cn
作者简介: 薄强(1991—),男,博士生,从事电动汽车无线充电技术研究. orcid.org/0000-0002-7313-4718. E-mail: boqiang@mail.iee.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
薄强
王丽芳
张玉旺

引用本文:

薄强,王丽芳,张玉旺. 基于分离补偿网络的IPT系统功率扩容策略[J]. 浙江大学学报(工学版), 2022, 56(6): 1257-1266.

Qiang BO,Li-fang WANG,Yu-wang ZHANG. Power expansion strategy of IPT system based on separated compensation network. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1257-1266.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.025        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1257

图 1  采用单逆变器的IPT系统原理图
图 2  基于分离补偿网络的IPT系统功率扩容拓扑
图 3  IPT系统功率扩容拓扑的等效电路
图 4  驱动不同步导致的环流
图 5  IPT系统功率扩容拓扑的控制策略
参数 数值 参数 数值
Udc/V 400 Cp1/nF 18.8
Lp1/μH 78.6 Cs/nF 16
Lp2/μH 78.8 L1/μH 236.7
Lp3/μH 41.5 R1 0.191
Lp4/μH 39.1 L2/μH 224.2
Cp2,1/nF 22.2 R2 0.259
Cp2,2/nF 43.2 M/μH 32.2
表 1  1.2 kW 基于分离补偿网络的IPT系统功率扩容拓扑参数配置
图 6  基于分离补偿网络的IPT系统功率扩容装置
图 7  考虑延迟角度影响的电压、电流波形
图 8  逆变器的输出阻抗角
图 9  逆变器电流的幅度频谱图
图 10  逆变器电压与电流的实验波形
图 11  逆变器电压与环流的实验波形
图 12  逆变器的电流比与功率比的仿真与实验值
图 13  满载输出功率及DC−DC整体传输效率
1 苏玉刚, 侯信宇, 戴欣 磁耦合无线电能传输系统异物检测技术综述[J]. 中国电机工程学报, 2021, 41 (2): 715- 728
SU Yu-gang, HOU Xin-yu, DAI Xin Review of foreign object detection technology in magnetic coupling wireless power transfer system[J]. Proceedings of the CSEE, 2021, 41 (2): 715- 728
2 付丛丛, 李醒飞, 杨少波, 等 海洋浮标感应耦合电能传输系统频率分裂特性及最大功率点分析[J]. 浙江大学学报:工学版, 2020, 54 (3): 475- 482
FU Cong-cong, LI Xing-fei, YANG Shao-bo, et al Frequency splitting characteristics and maximum power point analysis of ICPT system with ocean buoys[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 475- 482
3 孙跃, 贾鑫, 唐春森 基于三线圈合成算法的WPT-EV拾取定位技[J]. 浙江大学学报:工学版, 2017, 51 (5): 984- 991
SUN Yue, JIA Xin, TANG Chun-sen Pick-up position detection for WPT-EV based on three-coil synthesis algorithm[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (5): 984- 991
4 李砚玲, 杜浩, 何正友 基于双D形正交混合拓扑的感应电能传输系统恒流输出研究[J]. 中国电机工程学报, 2020, 40 (3): 942- 951
LI Yan-ling, DU Hao, HE Zheng-you Research on constant current output of inductive power transfer system with double-D quadrature hybrid topology[J]. Proceedings of the CSEE, 2020, 40 (3): 942- 951
5 MACHURA P, SANTIS V D, LI Q Driving range of electric vehicles charged by wireless power transfer[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (6): 5968- 5982
doi: 10.1109/TVT.2020.2984386
6 SUN G, MUNEER B, LI Y, et al Ultracompact implantable design with integrated wireless power transfer and RF transmission capabilities[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12 (2): 281- 291
doi: 10.1109/TBCAS.2017.2787649
7 YAN Z, SONG B, ZHANG Y, et al A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34 (5): 4005- 4008
doi: 10.1109/TPEL.2018.2871316
8 王付胜, 郭娟娟, 王文洋, 等 电动汽车无线充电系统实现软开关的参数优化设计方法[J]. 中国电机工程学报, 2019, 39 (Suppl.1): 258- 267
WANG Fu-sheng, GUO Juan-juan, WANG Wen-yang, et al A method of parameter optimization design to achieve ZVS for electric vehicle wireless charging system[J]. Proceedings of the CSEE, 2019, 39 (Suppl.1): 258- 267
9 盛况, 任娜, 徐弘毅 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40 (6): 1741- 1753
SHENG Kuang, REN Na, XU Hong-yi A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40 (6): 1741- 1753
10 BOSSHARD R, KOLAR J W Inductive power transfer for electric vehicle charging: technical challenges and tradeoffs[J]. IEEE Power Electronics Magazine, 2016, 3 (3): 22- 30
doi: 10.1109/MPEL.2016.2583839
11 WAVE IPT. Extend commercial EV range with WAVE high-power wireless charging [EB/OL]. [2021-06-08]. www. waveipt. com.
12 FENG H, TAVAKOLI R, ONAR O C, et al Advances in high-power wireless charging systems: overview and design considerations[J]. IEEE Transactions on Transportation Electrification, 2020, 6 (3): 886- 919
doi: 10.1109/TTE.2020.3012543
13 PRIES J, GALIGEKERE V P N, ONAR O C, et al A 50-kW three-phase wireless power transfer system using bipolar windings and series resonant networks for rotating magnetic fields[J]. IEEE Transactions on Power Electronics, 2020, 35 (5): 4500- 4517
14 BOSSHARD R, KOLAR J W Multi-objective optimization of 50 kW/85 kHz IPT system for public transport[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4 (4): 1370- 1382
15 VU V B, DAHIDAH M, PICKERT V, et al A high-power multiphase wireless dynamic charging system with low output power pulsation for electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8 (4): 3592- 3608
doi: 10.1109/JESTPE.2019.2932302
16 HAO H, COVIC G A, BOYS J T A parallel topology for inductive power transfer power supplies[J]. IEEE Transactions on Power Electronics, 2014, 29 (3): 1140- 1151
17 LI Y, HU J, LI X Efficiency analysis and optimization control for input-parallel output-series wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2020, 35 (1): 1074- 1085
18 KIM J H, LEE B S, LEE J H, et al Development of 1-MW inductive power transfer system for a high-speed train[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (10): 6242- 6250
doi: 10.1109/TIE.2015.2417122
19 麦瑞坤, 陆立文, 李勇 两逆变器并联IPT系统的环流消除方法研究[J]. 电工技术学报, 2016, 31 (3): 8- 15
MAI Rui-kun, LU Li-wen, LI Yong Circulating current elimination of parallel dual-inverter for IPT systems[J]. Transactions of China Electrotechnical Society, 2016, 31 (3): 8- 15
doi: 10.3969/j.issn.1000-6753.2016.03.002
20 LI Y, MAI R, Lu L, et al Active and reactive currents decomposition-based control of angle and magnitude of current for a parallel multi-inverter IPT system[J]. IEEE Transactions on Power Electronics, 2017, 32 (2): 1602- 1614
doi: 10.1109/TPEL.2016.2550622
21 ZHOU H, CHEN J, DENG Q, et al Input series output equivalent parallel multi-inverter system for high-voltage and high-power wireless power transfer[J]. IEEE Transactions on Power Electronics, 2021, 36 (1): 228- 238
doi: 10.1109/TPEL.2020.3000244
22 薄强, 王丽芳, 张玉旺, 等 应用于无线充电系统的SiC MOSFET关断特性分析[J]. 电力系统自动化, 2021, 45 (15): 150- 157
BO Qiang, WANG Li-fang, ZHANG Yu-wang, et al Analysis of turn-off characteristics of SiC MOSFET applied to wireless charging system[J]. Automation of Electric Power Systems, 2021, 45 (15): 150- 157
23 JIANG Y, WANG L, FANG J, et al A joint control with variable ZVS angles for dynamic efficiency optimization in wireless power transfer system[J]. IEEE Transactions on Power Electronics, 2020, 35 (10): 11064- 11081
[1] 刘克峰,何嘉保,奚剑雄,何乐年. 自适应死区时间控制的数字控制ACF变换器[J]. 浙江大学学报(工学版), 2021, 55(12): 2365-2372.