| 
					
						| 
								
									| 建筑与交通工程 |  |   |  |  
    					|  |  
    					| 基于深度强化学习的交通信号控制方法 |  
						| 刘智敏1,2(  ),叶宝林2,*(  ),朱耀东2,姚青1,吴维敏3 |  
					| 1. 浙江理工大学 信息学院,浙江 杭州 310018 2. 嘉兴学院 信息科学与工程学院,浙江 嘉兴 314001
 3. 浙江大学 工业控制技术国家重点实验室,智能系统与控制研究所,浙江 杭州 310027
 |  
						|  |  
    					| Traffic signal control method based on deep reinforcement learning |  
						| Zhi-min LIU1,2(  ),Bao-Lin YE2,*(  ),Yao-dong ZHU2,Qing YAO1,Wei-min WU3 |  
						| 1. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China 2. College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
 3. State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
 |  
					
						| 
								
									|  
          
          
            
             
												
												
												| 
												
												引用本文:
																																刘智敏,叶宝林,朱耀东,姚青,吴维敏. 基于深度强化学习的交通信号控制方法[J]. 浙江大学学报(工学版), 2022, 56(6): 1249-1256.	
																															 
																																Zhi-min LIU,Bao-Lin YE,Yao-dong ZHU,Qing YAO,Wei-min WU. Traffic signal control method based on deep reinforcement learning. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1249-1256.	
																															 链接本文: 
																
																	
																	https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.024
																	   或   
																
																
																https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1249
														    |  
            
									            
									                
																																															
																| 1 | 张立立, 王力, 张玲玉 城市道路交通控制概述与展望[J]. 科学技术与工程, 2020, 20 (16): 6322- 6329 ZHANG Li-li, WANG Li, ZHANG Ling-yu Urban road traffic control overview and prospect[J]. Science Technology and Engineering, 2020, 20 (16): 6322- 6329
 doi: 10.3969/j.issn.1671-1815.2020.16.002
 |  
																| 2 | 林晓辉 车路协同下基于交通密度的交叉口交通信号控制方法与仿真[J]. 工业工程, 2014, 17 (4): 123- 128 LIN Xiao-hui Traffic signal control method and simulation based on traffic density in cooperative vehicle infrastructure system[J]. Industrial Engineering Journal, 2014, 17 (4): 123- 128
 doi: 10.3969/j.issn.1007-7375.2014.04.020
 |  
																| 3 | 钟馥声, 王安麟, 姜涛, 等 城市交通信号自组织控制规则的邻域重构[J]. 哈尔滨工业大学学报, 2020, 52 (3): 74- 81 ZHONG Fu-sheng, WANG An-lin, JIANG Tao, et al Neighborhood reconstruction of urban traffic signal self-organizing control rules[J]. Journal of Harbin Institute of technology, 2020, 52 (3): 74- 81
 doi: 10.11918/201906054
 |  
																| 4 | 罗小芹, 王殿海, 金盛 面向混合交通的感应式交通信号控制方法[J]. 吉林大学学报:工学版, 2019, 49 (3): 695- 704 LUO Xiao-qin, WANG Dian-hai, JIN Sheng Traffic signal actuated control at isolated intersections for heterogeneous traffic[J]. Journal of Jilin University: Engineering and Technology Edition, 2019, 49 (3): 695- 704
 |  
																| 5 | YE B, WU W, RUAN K, et al A survey of model predictive control methods for traffic signal control[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (3): 623- 640 doi: 10.1109/JAS.2019.1911471
 |  
																| 6 | YE B, WU W, LI L, et al A hierarchical model predictive control approach for signal splits optimization in large-scale urban road networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (8): 2182- 2192 doi: 10.1109/TITS.2016.2517079
 |  
																| 7 | LIANG X, DU X, WANG G, et al A deep reinforcement learning network for traffic light cycle control[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (2): 1243- 1253 doi: 10.1109/TVT.2018.2890726
 |  
																| 8 | YANG J, ZHANG J, WANG H Urban traffic control in software defined internet of things via a multi-agent deep reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (6): 3742- 3754 |  
																| 9 | TAN T, BAO F, DENG Y, et al Cooperative deep reinforcement learning for large-scale traffic grid signal control[J]. IEEE Transactions on Cybernetics, 2020, 50 (6): 2687- 2700 doi: 10.1109/TCYB.2019.2904742
 |  
																| 10 | WANG S, XIE X, HUANG K, et al Deep reinforcement learning-based traffic signal control using high-resolution event-based data[J]. Entropy, 2019, 21 (8): 744 doi: 10.3390/e21080744
 |  
																| 11 | 刘皓, 吕宜生 基于深度强化学习的单路口交通信号控制[J]. 交通工程, 2020, 20 (2): 54- 59 LIU Hao, LYV Yi-sheng Deep reinforcement learning for traffic signal control of isolated signalized intersections[J]. Journal of Transportation Engineering, 2020, 20 (2): 54- 59
 |  
																| 12 | 郭梦杰, 任安虎 基于深度强化学习的单路口信号控制算法[J]. 电子测量技术, 2019, 42 (24): 49- 52 GUO Meng-jie, REN An-hu Single control algorithm at isolated urban intersections based on deep reinforcement learning[J]. Electronic Measurement Technology, 2019, 42 (24): 49- 52
 |  
																| 13 | 赖建辉 基于D3QN的交通信号控制策略[J]. 计算机科学, 2019, 46 (11A): 117- 121 LAI Jian-hui Traffic signal control based on double deep Q-learning network with dueling architecture[J]. Computer science, 2019, 46 (11A): 117- 121
 |  
																| 14 | CHU T, WANG J, CODECÀ L, et al Multi-agent deep reinforcement learning for large-scale traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (3): 1086- 1095 doi: 10.1109/TITS.2019.2901791
 |  
																| 15 | WU T, ZHOU P, LIU K, et al Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (8): 8243- 8256 doi: 10.1109/TVT.2020.2997896
 |  
																| 16 | HUANG X, YUAN T, QIAO G, et al Deep reinforcement learning for multimedia traffic control in software defined networking[J]. IEEE Network, 2018, 32 (6): 35- 41 doi: 10.1109/MNET.2018.1800097
 |  
																| 17 | WANG Z, LI H, WANG J, et al Deep reinforcement learning based conflict detection and resolution in air traffic control[J]. IET Intelligent Transport Systems, 2019, 13 (6): 1041- 1047 doi: 10.1049/iet-its.2018.5357
 |  
																| 18 | KUMAR N, RAHMAN S S, DHAKAD N Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (8): 4919- 4928 doi: 10.1109/TITS.2020.2984033
 |  
																| 19 | FENJIRO Y, BENBRAHIM H Deep reinforcement learning overview of the state of the art[J]. Journal of Automation Mobile Robotics and Intelligent Systems, 2018, 12 (3): 20- 39 doi: 10.14313/JAMRIS_3-2018/15
 |  
																| 20 | ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al Deep reinforcement learning: a brief survey[J]. IEEE Signal Processing Magazine, 2017, 34 (6): 26- 38 doi: 10.1109/MSP.2017.2743240
 |  
																| 21 | TROIA S, SAPIENZA F, VARÉ L, et al On deep reinforcement learning for traffic engineering in SD-WAN[J]. IEEE Journal on Selected Areas in Communications, 2021, 39 (7): 2198- 2212 doi: 10.1109/JSAC.2020.3041385
 |  
																| 22 | TIAN Y, WANG Z, YIN X, et al Traffic engineering in partially deployed segment routing over IPv6 network with deep reinforcement learning[J]. IEEE/ACM Transactions on Networking, 2020, 28 (4): 1573- 1586 doi: 10.1109/TNET.2020.2987866
 |  
																| 23 | LI M, LI Z, XU C, et al Deep reinforcement learning-based vehicle driving strategy to reduce crash risks in traffic oscillations[J]. Transportation research record, 2020, 2674 (10): 42- 54 doi: 10.1177/0361198120937976
 |  
																| 24 | WU Q, CHEN X, ZHOU Z Deep reinforcement learning with spatio-temporal traffic forecasting for data-driven base station sleep control[J]. IEEE/ACM Transactions on Networking, 2021, 29 (2): 935- 948 doi: 10.1109/TNET.2021.3053771
 |  
																| 25 | MNIH V, KAVUKCUOGLU K, SILVER D, et al Human-level control through deep reinforcement learning[J]. Nature, 2015, 518: 529- 533 doi: 10.1038/nature14236
 |  
																| 26 | WU T, ZHOU P, WANG B, et al Joint traffic control and multi-channel reassignment for core backbone network in SDN-IoT: a multi-agent deep reinforcement learning approach[J]. IEEE Transactions on Network Science and Engineering, 2021, 8 (1): 231- 245 doi: 10.1109/TNSE.2020.3036456
 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |