Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1181-1190, 1198    DOI: 10.3785/j.issn.1008-973X.2022.06.016
智能机器人     
推力吸附爬壁机器人的优化设计与试验
薛朝军1(),王海波1,2,*(),陈俞鹏1
1. 西南交通大学 机械工程学院,四川 成都 610031
2. 轨道交通运维技术与装备四川省重点实验室,四川 成都 610031
Optimal design and experimental study of thrust adsorption wall-climbing robot
Chao-jun XUE1(),Hai-bo WANG1,2,*(),Yu-peng CHEN1
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Chengdu 610031, China
 全文: PDF(3637 KB)   HTML
摘要:

介绍共轴式双旋翼推力吸附爬壁机器人,通过优化推力吸附机构和机架,增强负载能力、降低能耗、增加续航时间. 采用控制变量法控制推力吸附机构的气动参数如叶片数、桨叶安装角、间距比等,建立不同气动参数下机器人气动模型并进行流场仿真。基于仿真结果,完成推力吸附机构的优化设计;基于拓扑优化用构建响应面叠加多目标遗传优化算法(MOGA)、直接单目标自适应优化算法(AS-O)优化,完成机器人机架结构参数优化设计。与初始结构相比,机架上、下层板质量分别降低了55.62%、25.39%. 试验推力吸附机构和机器人攀爬能力,结果表明,推力吸附机构气动仿真结果可靠,上、下层旋翼旋转中心轴偏差与推力吸附机构性能关系密切,机器人具备良好壁面攀爬能力.

关键词: 爬壁机器人气动模型流场仿真结构参数优化    
Abstract:

A kind of thrust adsorption wall-climbing robot with coaxial dual-rotor was introduced. The thrust adsorption mechanism and frame were optimized respectively to enhance the load capacity, reduce energy consumption and increase the endurance time. The aerodynamic parameters of the thrust adsorption mechanism, such as blade number, blade installation angle and spacing ratio, were controlled by the control variable method. The aerodynamic model of the robot under different aerodynamic parameters was established and the flow field was simulated and solved. Based on the simulation results, the optimal design of the thrust adsorption mechanism was completed. Based on topology optimization, the structural parameter optimization design of the robot frame was completed by building response surface combined with multi objective genetic algorithm (MOGA) optimization and direct adaptive single-objective (AS-O) optimization. Compared with the initial structure, the mass of upper and lower plates were decreased 55.62% and 25.39% respectively. The thrust adsorption mechanism and climbing ability of robot were tested respectively, and the experimental results show that the aerodynamic simulation results of the thrust adsorption mechanism are reliable. The deviation of the rotation center axis of the upper and lower rotors is closely related to the performance of the thrust adsorption mechanism, and the robot has a good wall climbing ability.

Key words: wall-climbing robot    aerodynamic model    flow field simulation    structural parameter optimization
收稿日期: 2021-04-19 出版日期: 2022-06-30
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(51905451);轨道交通运维技术与装备四川省重点实验室开放基金资助项目(2019YW002)
通讯作者: 王海波     E-mail: 861356816@qq.com;haibowang@home.swjtu.edu.cn
作者简介: 薛朝军(1993—),男,硕士生,从事小型爬壁机器人研究. orcid.org/0000-0002-8064-5751. E-mail: 861356816@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
薛朝军
王海波
陈俞鹏

引用本文:

薛朝军,王海波,陈俞鹏. 推力吸附爬壁机器人的优化设计与试验[J]. 浙江大学学报(工学版), 2022, 56(6): 1181-1190, 1198.

Chao-jun XUE,Hai-bo WANG,Yu-peng CHEN. Optimal design and experimental study of thrust adsorption wall-climbing robot. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1181-1190, 1198.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.016        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1181

图 1  推力吸附爬壁机器人
k/ γ u γ d γ s
2 36.32 22.02 19.74
3 36.74 21.04 19.19
4 39.37 20.37 19.19
5 40.41 20.77 19.64
6 43.52 20.70 20.13
表 1  推力吸附机构的叶片数与 γ的关系
θ u/(°) θ d/(°) γ u γ d γ s
6 5 111.12 23.55 27.64
7 6 42.11 22.13 20.80
8 7 39.37 20.37 19.19
9 8 36.09 19.59 18.16
10 9 34.08 19.01 17.43
11 10 32.32 18.74 16.92
12 11 31.27 18.61 16.64
13 12 30.37 18.65 16.48
14 13 29.87 18.84 16.47
15 14 29.50 19.40 16.69
16 15 29.70 19.28 16.66
表 2  推力吸附机构的安装角与 γ的关系
H/ D γ u γ d γ s
0.10 47.12 31.77 27.19
0.15 32.82 22.52 19.02
0.18 30.80 20.36 17.43
0.19 29.43 19.91 16.92
0.20 29.26 19.64 16.74
0.23 28.96 19.37 16.55
0.25 29.47 19.03 16.49
0.30 29.87 18.84 16.47
表 3  推力吸附机构的间距比与 γ的关系
图 2  推力吸附爬壁机器人的仿真功率与推力
图 3  旋翼的速度矢量图
图 4  旋翼的压力云图
图 5  机架上、下层板的受力与约束
Hz
阶数 f u f d 阶数 f u f d
1 360.9 225.8 4 368.2 433.9
2 364.0 391.7 5 447.6 666.9
3 368.2 391.8 6 843.4 885.1
表 4  拓扑前机架上、下层板的前6阶固有频率
图 6  机架上、下层板的拓扑优化网格图
图 7  机架上、下层板的初始结构设计
Hz
阶数 f u f d 阶数 f u f d
1 425.9 220.3 4 1793.0 468.6
2 1057.2 466.8 5 2456.4 502.3
3 1057.4 468.6 6 2876.1 600.6
表 5  初始设计时机架上、下层板的前6阶固有频率
图 8  机架上、下层板模型的参数化
P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8
mm
初始值 3.0 60.0 38.0 3.0 76.0 21.0 114.0 25.5
上限 4.0 80.0 50.0 4.0 80.0 28.0 120.0 30.0
下限 1.5 10.0 30.0 1.5 50.0 20.0 51.0 8.0
取值 2.0 45.0 30.0 3.0 65.0 20.0 80.0 15.0
表 6  机架上、下层板的参数变化范围
图 9  上层板的优化Pareto解集分布图
图 10  下层板的优化Pareto解集分布图
方案 P 1/mm P 2/mm P 3/mm d/mm f/Hz m/g
1 1.80 30.25 30.00 0.60 257.49 62.97
2 1.91 23.18 32.01 0.50 274.86 69.87
3 1.81 42.08 32.50 0.50 261.50 70.49
4 1.88 27.88 33.01 0.49 271.75 71.53
5 2.03 25.49 30.56 0.43 290.58 71.67
初始值 3.00 60.00 38.00 0.09 425.90 141.88
表 7  上层板的直接优化结果
方案 P 1/mm P 2/mm P 3/mm d/mm f/Hz m/g
1 1.75 43.80 30.05 0.60 248.04 63.67
2 1.79 35.99 30.01 0.60 255.64 63.72
3 1.73 47.61 30.03 0.60 244.55 63.77
4 1.76 43.73 30.04 0.60 248.59 63.78
5 1.79 37.90 30.02 0.60 254.21 63.79
初始值 3.00 60.00 38.00 0.09 425.90 141.88
表 8  上层板的构建响应面优化结果
方案 P 4/mm P 5/mm P 6/mm P 7/mm P 8/mm d/mm f/Hz m/g
1 2.80 68.56 20.00 78.56 15.09 0.60 220.27 235.30
2 2.97 69.04 20.43 71.83 11.98 0.57 235.89 241.96
3 2.93 63.58 22.14 61.93 24.35 0.57 222.89 260.73
4 2.81 75.57 20.86 80.09 18.34 0.51 232.28 258.07
5 3.02 75.14 21.06 65.17 13.74 0.52 258.75 259.66
初始值 3.00 76.00 21.00 114.00 25.50 0.33 220.05 315.39
表 9  下层板的直接优化结果
方案 P 4/mm P 5/mm P 6/mm P 7/mm P 8/mm d/mm f/Hz m/g
1 2.93 60.86 20.12 84.66 13.85 0.60 203.19 237.30
2 2.92 59.41 20.21 82.54 15.47 0.60 203.60 237.53
3 2.93 60.86 20.28 84.96 13.81 0.60 203.03 238.11
4 2.96 60.86 20.04 83.23 13.45 0.59 206.02 238.23
5 2.93 60.86 20.34 84.66 13.81 0.60 203.22 238.15
初始值 3.00 76.00 21.00 114.00 25.50 0.33 220.05 315.39
表 10  下层板的构建响应面优化结果
图 11  上层板直接优化与建立响应面优化的质量对比
图 12  下层板直接优化与建立响应面优化的质量对比
图 13  机架上、下底板的俯视图
图 14  试验验测试平台
图 15  推力吸附爬壁机器人功率和推力的试验与仿真结果对比
G l / kg N t / kw ψ t/
(g · w ?1
N s / kW N I / kW ψ s/
(g · w ?1
R ψ
0.557 0.091 6.121 0.039 0.049 11.283 0.542
1.310 0.243 5.391 0.141 0.178 7.340 0.734
1.701 0.338 5.033 0.209 0.265 6.430 0.783
2.256 0.478 4.720 0.319 0.404 5.587 0.845
3.000 0.706 4.249 0.489 0.619 4.847 0.877
3.702 0.953 3.885 0.671 0.849 4.359 0.891
4.201 1.144 3.672 0.811 1.027 4.092 0.897
4.765 1.338 3.561 0.980 1.241 3.841 0.927
5.283 1.570 3.365 1.143 1.447 3.651 0.922
5.758 1.784 3.228 1.301 1.647 3.496 0.923
6.240 2.056 3.035 1.468 1.858 3.358 0.904
表 11  旋翼推力、功率的试验值和仿真值
图 16  旋翼推力随安装误差的变化
图 17  不同倾角状态下的推力吸附爬壁机器人
图 18  样机竖直壁面攀爬试验
1 董雅芸 我国桥梁安全与健康检测监测新技术的发展与应用: 访在役长大桥梁安全与健康国家重点实验室主任张宇峰[J]. 现代交通技术, 2020, 17 (6): 1- 6
DONG Ya-yun Development and application of new inspection and monitoring technology for bridge safety and health in China: interview with Zhang Yufeng, director of the state key laboratory of safety and health for in-service long span bridge[J]. Modern Transportation Technology, 2020, 17 (6): 1- 6
doi: 10.3969/j.issn.1672-9889.2020.06.001
2 刘洋. 基于结构计算与海量样本数据统计的桥梁预警指标方法研究[D]. 合肥: 安徽建筑大学, 2020: 1.
LIU Yang. Research on bridge early warning index method based on structural calculation and massive sample data statistics [D]. Hefei: Anhui Jianzhu University, 2020: 1.
3 SUKVICHAI K, MAOLANON P, SONGKRASIN K. Design of a double-propellers wall-climbing robot [C]// 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau: IEEE, 2017: 239-245.
4 Disney makes carbon fiber wall-climbing robot [J]. Reinforced Plastics, 2016, 60(2) : 75.
5 ADARSH R S, DHARMANA M M Multi-terrain multi-utility robot[J]. Procedia Computer Science, 2018, 133: 651- 659
doi: 10.1016/j.procs.2018.07.100
6 LIANG P, GAO X S, ZHANG Q F, et al Design and stability analysis of a wall-climbing robot using propulsive force of propeller[J]. Symmetry, 2020, 13 (1): 37
doi: 10.3390/sym13010037
7 ALKALLA M G, FANNI M A, MOHAMED A F, et al Tele-operated propeller-type climbing robot for inspection of petrochemical vessels[J]. Industrial Robot: An International Journal, 2017, 44 (2): 166- 177
doi: 10.1108/IR-07-2016-0182
8 ALKALLA M G, FANNI M A, MOHAMED A F, et al EJBot-II: an optimized skid-steering propeller-type climbing robot with transition mechanism[J]. Advanced Robotics, 2019, 33 (20): 1042- 1059
doi: 10.1080/01691864.2019.1657948
9 曾伟, 林永峰, 黄水林, 等 共轴刚性旋翼非定常气动特性初步试验研究[J]. 直升机技术, 2017, (1): 13- 17
ZENG Wei, LIN Yong-feng, HUANG Shui-lin, et al Preliminary experimental research on unsteady aerodynamic characteristics of coaxial rigid rotor[J]. Helicopter Hechnique, 2017, (1): 13- 17
doi: 10.3969/j.issn.1673-1220.2017.01.003
10 王适存. 直升机空气动力学[M]. 南京: [s. n.], 1985: 45.
11 王进, 王向坤, 扶建辉, 等 重载机器人横梁结构静动态特性分析与优化[J]. 浙江大学学报:工学版, 2021, 55 (1): 124- 134
WANG Jin, WANG Xiang-kun, FU Jian-hui, et al Static and dynamic characteristic analysis and structure optimization for crossbeam structure of heavy-duty truss robot[J]. Journal Of Zhejiang University: Engineering Science, 2021, 55 (1): 124- 134
12 ABDULLAH K, DAVID W C, ALICE E S Multi-objective optimization using genetic algorithms: a tutorial[J]. Reliability Engineering and System Safety, 2005, 91 (9): 992- 1007
[1] 李琳,薛泽浩,蔡蒂,张铁. 管道内壁四足爬壁机器人的运动学与步态规划[J]. 浙江大学学报(工学版), 2021, 55(12): 2286-2297.
[2] 宋伟, 姜红建, 王滔, 高振飞, 杜镇韬, 朱世强. 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报(工学版), 2018, 52(10): 1837-1844.
[3] 方文敏, 成琳琳, 傅新, 周华, 杨华勇. 带U形节流槽的滑阀稳态液动力研究[J]. J4, 2010, 44(3): 574-580.
[4] 郑毅, 谢海波, 傅新, 等. Y-sensor中两相层流交界面位置及分子扩散[J]. J4, 2009, 43(10): 1757-1760.
[5] 弓永军 周华 杨华勇. 结构参数对先导式纯水溢流阀性能的影响[J]. J4, 2006, 40(5): 869-873.