土木工程 |
|
|
|
|
基于自注意力机制的桥梁螺栓检测算法 |
鞠晓臣1( ),赵欣欣1,*( ),钱胜胜2 |
1. 中国铁道科学研究院集团有限公司 铁道建筑研究所,北京 100081 2. 中国科学院 自动化研究所,北京 100190 |
|
Self-attention mechanism based bridge bolt detection algorithm |
Xiao-chen JU1( ),Xin-xin ZHAO1,*( ),Sheng-sheng QIAN2 |
1. Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China 2. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
1 |
张清华, 卜一之, 李乔 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30 (3): 14- 30 ZHANG Qing-hua, BU Yi-zhi, LI Qiao Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30 (3): 14- 30
doi: 10.3969/j.issn.1001-7372.2017.03.002
|
2 |
鞠晓臣 U肋-面板全熔透焊接接头疲劳性能试验研究[J]. 中国公路学报, 2019, 32 (11): 176- 182 JU Xiao-chen Experimental study on fatigue performance of full penetration welded joints of Ushaped rib-plate[J]. China Journal of Highway and Transport, 2019, 32 (11): 176- 182
|
3 |
赵欣欣, 刘晓光, 潘永杰 正交异性钢桥面板纵肋腹板与面板连接构造的疲劳试验研究[J]. 中国铁道科学, 2013, 32 (2): 41- 45 ZHAO Xin-xin, LIU Xiao-guang, PAN Yong-jie Fatigue test study on the joint structure between the deck and longitudinal rib web of orthotropic steel bridge deck[J]. China Railway Science, 2013, 32 (2): 41- 45
|
4 |
钟新谷, 彭雄, 沈明燕 基于无人飞机成像的桥梁裂缝宽度识别可行性研究[J]. 土木工程学报, 2019, 52 (4): 52- 61 ZHONG Xin-gu, PENG Xiong, SHEN Ming-yan Feasibility study on bridge crack width identification based on UAV imaging[J]. China Civil Engineering Journal, 2019, 52 (4): 52- 61
|
5 |
CHOU J C, O’NEILLWENDE A, CHENGH D Pavement distress evaluation using fuzzy logic and moment in variants[J]. Transportation Research Record, 1995, 1505 (1): 39- 46
|
6 |
NGUYEN N H, KAM T Y, CHENG P Y An automatic approach for accurate edge detection of concrete crack utilizing 2D geometric features of crack[J]. Journal of Signal Processing System, 2014, 77 (3): 221- 240
doi: 10.1007/s11265-013-0813-8
|
7 |
CHA Y J, CHOI W, BÜYÜKÖZTÜRK O Deep learning-based crack damage detection using convolutional neural networks[J]. Compute-aided Civil and Infrastructure Engineering, 2017, 32 (5): 361- 378
doi: 10.1111/mice.12263
|
8 |
沙爱民, 童峥, 高杰 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31 (1): 1- 10 SHA Ai-min, TONG Zheng, GAO Jie Road surface disease recognition and measurement based on convolutional neural network[J]. China Journal of Highway and Transport, 2018, 31 (1): 1- 10
doi: 10.3969/j.issn.1001-7372.2018.01.001
|
9 |
韩晓健, 赵志成, 沈泽江 卷积神经网络在桥梁结构表面病害检测中的应用研究[J]. 结构工程师, 2019, 35 (2): 106- 111 HAN Xiao-jian, ZHAO Zhi-cheng, SHEN Ze-jiang Research on the application of convolutional neural network in the detection of bridge structure surface diseases[J]. Structural Engineers, 2019, 35 (2): 106- 111
doi: 10.3969/j.issn.1005-0159.2019.02.014
|
10 |
赵欣欣, 钱胜胜, 刘晓光 基于卷积神经网络的铁路桥梁高强螺栓缺失图像识别方法[J]. 中国铁道科学, 2018, 39 (4): 56- 62 ZHAO Xin-xin, QIAN Sheng-sheng, LIU Xiao-guang Recognition method for missing images of railway bridge high-strength bolts based on convolutional neural network[J]. China Railway Science, 2018, 39 (4): 56- 62
doi: 10.3969/j.issn.1001-4632.2018.04.09
|
11 |
李良福, 马卫飞, 李丽 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019, 6: 1- 16 LI Liang-fu, MA Wei-fei, LI Li Research on bridge crack detection algorithm based on deep learning[J]. Acta Automatica Sinica, 2019, 6: 1- 16
|
12 |
CHA Y J, CHOI W, SUH G Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-aided Civil and Infrastructure Engineering, 2018, 33 (4): 1- 17
|
13 |
ZHANG C, CHANG C, JAMSHIDI M Concrete bridge surface damage detection using a single-stage detector[J]. Computer-aided Civil and Infrastructure Engineering, 2020, 35 (4): 389- 409
|
14 |
LUVIZON D C, PICARD D, TABIA H HediTabia: multi-task deep learning for real-time 3D human pose estimation and action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (8): 2752- 2764
|
15 |
ZHOU X, WANG D, KRÄHENBÜHL P. Objects as points [EB/OL]. [2019-04-16]. https://arxiv.org/abs/1904.07850.
|
16 |
SANDLER M, HOWARD A, ZHU M. Mobilenetv2: invert residuals and linear bottlenecks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018, 4510-4520.
|
17 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
18 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39 (6): 1137- 1149
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|