Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (3): 444-451, 509    DOI: 10.3785/j.issn.1008-973X.2022.03.003
机械工程、能源工程     
基于交叉簧片式铰链的变弯度机翼机构设计
徐钧恒1,2(),杨晓钧1,*(),李兵1
1. 哈尔滨工业大学(深圳) 机电工程与自动化学院,深圳 518000
2. 上海宇航系统工程研究所,上海 201108
Design of wing mechanism with variable camber based on cross-spring flexural pivots
Jun-heng XU1,2(),Xiao-jun YANG1,*(),Bing LI1
1. School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518000, China
2. Shanghai Institute of Aerospace System Engineering, Shanghai 201108, China
 全文: PDF(1444 KB)   HTML
摘要:

为了研究机翼弦向连续变弯度的设计问题,提出由柔性后缘机构与刚性连杆驱动机构组成的机翼变弯度设计方案以及建模分析方法. 基于交叉簧片式柔性铰链设计机翼机构构型. 采用链式梁约束建模方法,建立柔性后缘机构的理论力学模型,得到其受力和变形的关系,并利用有限元仿真对理论力学模型进行验证. 在力学模型的基础上,采用NSGA-II多目标遗传算法优化机翼机构的相关尺寸参数,提升机翼的气动特性. 经优化,机翼巡航阶段的升阻比提升1.09%,起降阶段的升力系数提高2.54%. 经实验验证了设计的变弯度机翼机构变弯度的精度和变弯度的范围.

关键词: 变弯度机翼柔性机构链式梁约束建模方法多目标优化气动性能    
Abstract:

In order to design airfoil mechanism with continuous variable camber, a morphing wing structure and modeling analysis was proposed by using flexible trailing edge mechanism and rigid connecting rod driving mechanism. The wing mechanism was based on cross-spring flexural pivots. The theoretical mechanics model of the flexible trailing edge mechanism was established by using chained beam constraint model, and the relationship between the force and deformation of the mechanism was also obtained. Then, compared the theoretical mechanics model with finite element model. On the basis of the mechanical model, In order to improve the aerodynamic characteristics of the wing mechanism, NSGA-II multi-objective genetic algorithm was used to optimize the dimension parameters of the mechanism. After optimization, the lift-drag ratio of the morphing wing in cruise stage is increased by 1.09%, and the lift coefficient in takeoff stage is increased by 2.54%. The deformation precision and deformation range of the airfoil mechanism were tested by experiments.

Key words: variable camber wing    flexible mechanism    chained beam constraint model    multi-objective optimization    aerodynamic performance
收稿日期: 2021-04-21 出版日期: 2022-03-29
CLC:  V 224  
基金资助: 深圳市国际合作研究资助项目(GJHZ20170313113529978)
通讯作者: 杨晓钧     E-mail: xujunheng0704@163.com;yangxiaojun@hit.edu.cn
作者简介: 徐钧恒(1996—),男,硕士生,从事机器人机构学方面的研究. orcid.org/0000-0002-6936-6831. E-mail: xujunheng0704@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
徐钧恒
杨晓钧
李兵

引用本文:

徐钧恒,杨晓钧,李兵. 基于交叉簧片式铰链的变弯度机翼机构设计[J]. 浙江大学学报(工学版), 2022, 56(3): 444-451, 509.

Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.003        https://www.zjujournals.com/eng/CN/Y2022/V56/I3/444

图 1  机翼布局示意图
图 2  变弯度机翼的整体示意图
图 3  机翼柔性后缘及子单元
图 4  驱动机构模型图
图 5  柔性后缘子单元参数定义
图 6  柔性后缘受力示意图
图 7  子单元受力与变形示意图
子单元编号 L/mm T/mm W/mm λ α/(°)
1 55.43 3.000 15 0.127 30
2 44.34 2.400 15 0.127 30
3 35.47 1.920 15 0.127 30
4 28.38 1.536 15 0.127 30
表 1  柔性后缘子单元的形状几何参数
图 8  柔性后缘受弯矩时结果比较
图 9  柔性后缘受纵向载荷时结果比较
图 10  优化算法流程图
图 11  优化结果示意图
图 12  优化后设计点处翼型图
飞行阶段 θ1/(°) θ2/(°) θ3/(°) θ4/(°) Fx/N Fy/N
状态1)不考虑气动力
状态1)考虑气动力
状态2)不考虑气动力
状态2)考虑气动力
2.3 1.2 2.0 3.8 0 5.8
2.0 1.6 2.5 2.8 ?198 46.0
4.6 2.5 4.0 7.5 0 12.0
4.6 2.6 4.0 9.2 ?58 26.0
表 2  优化设计变量结果
图 13  驱动机构简图
图 14  机翼后缘运动轨迹图
图 15  变弯度机翼实验平台
图 16  变形精度实验结果
图 17  变形范围实验结果
1 李小飞, 张梦杰, 王文娟, 等 变弯度机翼技术发展研究[J]. 航空科学技术, 2020, 31 (2): 12- 24
LI Xiao-fei, ZHANG Meng-jie, WANG Wen-juan, et al Research on variable camber wing technology development[J]. Aeronautical Science and Technology, 2020, 31 (2): 12- 24
2 GILBERT W W Mission adaptive wing system for tactical aircraft[J]. Journal of Aircraft, 1981, 18 (7): 597- 602
doi: 10.2514/3.57533
3 CAMPANILE L F Modal synthesis of flexible mechanisms for airfoil shape control[J]. Journal of Intelligent Material Systems and Structures, 2007, 19 (7): 779- 789
4 CAMPANILE L F, ANDERS S Aerodynamic and aeroelastic amplification in adaptive belt-rib airfoils[J]. Aerospace Science and Technology, 2005, 9 (1): 55- 63
doi: 10.1016/j.ast.2004.07.007
5 HASSE A, CAMPANILE L F Design of compliant mechanisms with selective compliance[J]. Smart Materials and Structures, 2009, 18 (11): 115016
doi: 10.1088/0964-1726/18/11/115016
6 DAYYANI I, KHODAPARAST H H, WOODS B K, et al The design of a coated composite corrugated skin for the camber morphing airfoil[J]. Journal of Intelligent Material Systems and Structures, 2015, 26 (13): 1592- 1608
doi: 10.1177/1045389X14544151
7 WOODS B K S, DAYYANI I, FRISWELL M I Fluid/structure-interaction analysis of the fish-bone-active-camber morphing concept[J]. Journal of Aircraft, 2015, 52 (1): 307- 319
doi: 10.2514/1.C032725
8 LI G, MIAO Z, LI B, et al Type synthesis to design variable camber mechanisms[J]. Advances in Mechanical Engineering, 2016, 8 (8): 2071835688
9 KUDER I K, ARRIETA A F, RAITHER W E, et al Variable stiffness material and structural concepts for morphing applications[J]. Progress in Aerospace Sciences, 2013, 63: 33- 55
doi: 10.1016/j.paerosci.2013.07.001
10 于靖军, 郝广波, 陈贵敏, 等 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 13 (51): 53- 68
YU Jing-jun, HAO Guang-bo, CHEN Gui-min, et al State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 13 (51): 53- 68
11 杨其资, 刘浪, 毕树生, 等 广义三交叉簧片柔性轴承的旋转刚度特性研究[J]. 机械工程学报, 2015, 51 (13): 189- 195
YANG Qi-zi, LIU Lang, BI Shu-sheng, et a1 Rotational stiffness characterization of generalized triple-cross-spring flexure pivots[J]. Journal of Mechanical Engineering, 2015, 51 (13): 189- 195
doi: 10.3901/JME.2015.13.189
12 ZHAO H, BI S Accuracy characteristics of the generalized cross-spring pivot[J]. Mechanism and Machine Theory, 2010, 45 (10): 1434- 1448
doi: 10.1016/j.mechmachtheory.2010.05.004
13 ZHAO H, BI S Stiffness and stress characteristics of the generalized cross-spring pivot[J]. Mechanism and Machine Theory, 2010, 45 (3): 378- 391
doi: 10.1016/j.mechmachtheory.2009.10.001
14 WITTRICK W H The properties of crossed flexure pivots, and the influence of the point at which the strips cross[J]. Aeronautical Quarterly, 1951, 2 (4): 272- 292
15 CHEN G, MA F, HAO G, et al Modeling large deflections of initially curved beams in compliant mechanisms using chained beam constraint model[J]. Journal of Mechanisms and Robotics, 2019, 11 (1): 011002
16 DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6 (2): 182- 197
doi: 10.1109/4235.996017
[1] 王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.
[2] 陈俊杰,李洪均,曹张华. 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报(工学版), 2021, 55(9): 1782-1787.
[3] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
[4] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[5] 黄华,邓文强,李源,郭润兰. 基于空间动力学优化的机床结构件质量匹配设计[J]. 浙江大学学报(工学版), 2020, 54(10): 2009-2017.
[6] 童水光,赵航,刘会琴,童哲铭,余跃,唐宁,吴伟杰,李进富,从飞云,张昊,王寅华,郝国帅. 中开多级离心泵效率优化计算方法[J]. 浙江大学学报(工学版), 2019, 53(5): 988-996.
[7] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.
[8] 张德胜, 刘安, 陈健, 赵睿杰, 施卫东. 采用粒子群算法的水平轴潮流能水轮机翼型多目标优化[J]. 浙江大学学报(工学版), 2018, 52(12): 2349-2355.
[9] 石海民, 俞小莉, 黄钰期, 刘震涛, 李思文, 陆国栋. 多风扇冷却模块导风罩深度结构研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1844-1850.
[10] 余洋, 夏春和, 胡潇云. 采用混和路径攻击图的防御方案生成方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1745-1759.
[11] 张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢. 考虑热机耦合的排气歧管多目标优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1153-1162.
[12] 李建丽, 丁丁, 李涛. 基于二次聚类的多目标混合云任务调度算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1233-1241.
[13] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[14] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[15] 过晓芳,王宇平,代才. 新的混合分解高维多目标进化算法[J]. 浙江大学学报(工学版), 2016, 50(7): 1313-1321.