Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (2): 388-397    DOI: 10.3785/j.issn.1008-973X.2022.02.020
机械工程     
基于单颗磨粒划切试验的SiCp/Al复合材料表面去除机理研究
张红哲1(),张旭1,朱晓春1,鲍永杰2,*()
1. 大连理工大学 工程训练中心,辽宁 大连 116023
2. 大连海事大学 轮机工程学院,辽宁 大连 116026
Surface removal mechanism study of SiCp/Al composites based on single-point cutting test
Hong-zhe ZHANG1(),Xu ZHANG1,Xiao-chun ZHU1,Yong-jie BAO2,*()
1. Engineering Training Center, Dalian University of Technology, Dalian 116023, China
2. Marine Engineering College, Dalian Maritime University, Dalian 116026, China
 全文: PDF(6269 KB)   HTML
摘要:

碳化硅颗粒增强铝基(SiCp/Al)复合材料中含有不规则碳化硅颗粒使得材料内部形成大量非理想截面,为材料表面的有效去除带来困难. 为了揭示材料去除机理,进行SiCp/Al 复合材料单颗磨粒变切深划切的表面去除仿真分析和试验验证. 研究结果表明,界面破坏对表面创成有重要影响,存在铝合金基体撕裂、界面分离,碳化硅颗粒裸露、裂纹扩展、破碎脱落、压入铝合金基体、碎片滑擦材料表面等去除过程,碳化硅颗粒中部大面积破碎脱落形成凹坑,并在刀具推挤作用下对材料进行二次切削,使铝合金基体表面形成非连续裂纹. SiCp/Al复合材料中由于铝合金基体的存在,实际划切深度小于名义切削深度. 研究可以为SiCp/Al复合材料去除机理与加工研究提供一定借鉴.

关键词: SiCp/Al复合材料单颗磨粒划切试验缺陷形成机理划切仿真凹坑裂纹    
Abstract:

SiC particle reinforced aluminum matrix (SiCp/Al) composites contain irregular silicon carbide particles, causing a large number of non ideal cross-sections in the material, which makes it difficult to remove the surface of the material effectively. Simulation analysis and experimental verification of surface removal of SiCp/Al composite with variable cutting depth were carried out, in order to reveal the mechanism of material removal. Results show that the interface failure has an important impact on surface formation and there are removal processes such as aluminum alloy matrix tearing, interface separating; silicon carbide particles exposing, crack propagation, breaking and falling off, pressing into aluminum alloy matrix, debris sliding against the material surface, etc. The large area of the silicon carbide particles crushing and falling off, causes pit defect and the material is subjected to secondary cutting under the tool push, so that the surface of the aluminum matrix forms non-continuous cracks. In SiCp/Al composites, the actual cutting depth is less than the nominal cutting depth due to the existence of aluminum alloy matrix. Research in this paper can provide some references for the study of removal mechanism and processing of SiCp/Al composites.

Key words: SiCp/Al composite    single-point cutting test    defect formation mechanism    cutting simulation    pit defect    crack
收稿日期: 2021-04-08 出版日期: 2022-03-03
CLC:  TB 331  
基金资助: 国家自然科学基金资助项目(51875079);国家自然基金联合基金资助项目(U21A20165);辽宁省兴辽英才计划资助项目(XLYC1907196)
通讯作者: 鲍永杰     E-mail: zhanghongzhe@dlut.edu.cn;yongjie@dlmu.edu.cn
作者简介: 张红哲(1970—),女,副教授,从事复合材料切削加工机理和刀具设计研究. orcid.org/0000-0003-4910-0689. E-mail: zhanghongzhe@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张红哲
张旭
朱晓春
鲍永杰

引用本文:

张红哲,张旭,朱晓春,鲍永杰. 基于单颗磨粒划切试验的SiCp/Al复合材料表面去除机理研究[J]. 浙江大学学报(工学版), 2022, 56(2): 388-397.

Hong-zhe ZHANG,Xu ZHANG,Xiao-chun ZHU,Yong-jie BAO. Surface removal mechanism study of SiCp/Al composites based on single-point cutting test. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 388-397.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.02.020        https://www.zjujournals.com/eng/CN/Y2022/V56/I2/388

A/MPa B/MPa n C m Tr/K Tm/K
370.4 1798.7 0.73315 0.0128 1.5282 293 863
d1 d2 d3 d4 d5 ? ?
0.116 0.211 ?2.172 0.012 ?0.01256 ? ?
表 1  2A12铝合金Johnson-Cook本构模型和失效参数[14-15]
材料
参数
E/
GPa
μ τ/
(10?6 K?1)
ρ/
(103 kg·m?3)
$\lambda $/
(W·m?1·K?1)
c/
(J·kg?1·K?1)
2A12
铝合金
71.7 0.33 26.6 2.77 175 921
碳化硅 420.0 0.14 4.9 3.13 81 427
表 2  2A12铝合金和碳化硅颗粒物理力学性能参数[15-16]
图 1  SiCp/Al微米尺度有限元模型网格划分与边界条件
图 2  符合实际磨削加工参数范围的单颗磨粒划切试验装置与方法
h/μm r/mm v/(m?s?1 Δt/s vf/(mm?min?1 n/(r?min?1)
20 162 5.26 0.10~0.15 100 310
表 3  符合实际磨削加工参数范围的单颗磨粒划切试验参数
图 3  2A12铝合金、65% SiCp/2A12铝复合材料、碳化硅陶瓷前处理后工件表面形貌
图 4  SiCp/Al复合材料中铝合金基体被去除过程仿真
图 5  碳化硅颗粒破碎导致的SiCp/Al复合材料凹坑缺陷形成过程仿真
图 6  SiCp/Al复合材料中碳化硅颗粒去除所经历变形过程仿真
图 7  SiCp/Al复合材料中碳化硅颗粒二次切削过程仿真
图 8  3种材料纵截面轮廓曲线与SiCp/Al复合材料不同切深微观形貌
1 武高辉 金属基复合材料发展的挑战与机遇[J]. 复合材料学报, 2014, (5): 1228- 1237
WU Gao-hui Challenges and opportunities for the development of metal matrix composites[J]. Journal of Composite Materials, 2014, (5): 1228- 1237
2 DONG G J, ZHANG H J, ZHOU M, et al Experimental investigation on ultrasonic vibration-assisted turning of SiCp/Al composites[J]. Advanced Manufacturing Processes, 2013, 28 (9): 999- 1002
3 KADIVAR M A, AKBARI J, YOUSEFI R, et al Investigating the effects of vibration method on ultrasonic assisted drilling of Al/SiCp metal matrix composites[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30 (3): 344- 350
doi: 10.1016/j.rcim.2013.10.001
4 ZHAO X, GONG Y D, CAI M, et al Numerical and experimental analysis of material removal and surface defect mechanism in scratch tests of high volume fraction SiCp/Al composites[J]. Materials, 2020, 13 (3): 796
doi: 10.3390/ma13030796
5 YIN G Q, WANG D, CHENG J Experimental investigation on micro-grinding of SiCp/Al metal matrix composites[J]. International Journal of Advanced Manufacturing Technology, 2019, 102 (9–12): 3503- 3517
doi: 10.1007/s00170-019-03375-0
6 WANG Y F, LIAO W H, YANG K, et al Investigation on cutting mechanism of SiCp/Al composites in precision turning[J]. International Journal of Advanced Manufacturing Technology, 2019, 100 (1–4): 963- 972
doi: 10.1007/s00170-018-2650-1
7 WANG Y F, LIAO W H, YANG K, et al Simulation and experimental investigation on the cutting mechanism and surface generation in machining SiCp/Al MMCs[J]. International Journal of Advanced Manufacturing Technology, 2019, 100 (5–8): 1393- 1404
doi: 10.1007/s00170-018-2769-0
8 LIU J W, CHENG K, DING H, et al Simulation study of the influence of cutting speed and tool-particle interaction location on surface formation mechanism in micromachining SiCp/Al composites[J]. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 2018, 232 (11): 2044- 2056
doi: 10.1177/0954406217713521
9 DU J G, MING W Y, CAO Y, et al Particle removal mechanism of high volume fraction SiCp/Al composites by single diamond grit tool[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2019, 32 (2): 324- 331
10 ZHA H T, FENG P F, ZHANG J, et al. Material removal mechanism in rotary ultrasonic machining of high-volume fraction SiCp/Al composites[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5–8): 2099–2109.
11 吴红兵, 贾志欣, 刘刚, 等 航空钛合金高速切削有限元建模[J]. 浙江大学学报:工学版, 2010, 44 (5): 982- 987
WU Hong-bing, JIA Zhi-xin, LIU Gang, et al Finite element modeling for high speed cutting of aeronautical titanium alloy[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (5): 982- 987
12 杨勇, 柯映林, 董辉跃 钛合金切削绝热剪切带形成过程的有限元分析[J]. 浙江大学学报:工学版, 2008, 42 (3): 534- 538
YANG Yong, KE Ying-lin, DONG Hui-yue Finite element analysis of adiabatic shear band formation in titanium alloy cutting[J]. Journal of Zhejiang University: Engineering Science, 2008, 42 (3): 534- 538
13 LIU J, BAI Y, XU C Evaluation of ductile fracture models in finite element simulation of metal cutting processes[J]. Journal of Manufacturing Science and Engineering, 2014, 136 (1): 011010
doi: 10.1115/1.4025625
14 李春雷. 2A12铝合金本构关系实验研究[D]. 黑龙江: 哈尔滨工业大学, 2006.
LI Chun-lei. Experimental study on constitutive relationship of 2A12 aluminum alloy [D]. Heilongjiang: Harbin Institute of Technology, 2006
15 张伟, 魏刚, 肖新科 2A12铝合金本构关系和失效模型[J]. 兵工学报, 2013, 34 (3): 276- 282
ZHANG Wei, WEI Gang, XIAO Xin-ke Constitutive relation and failure model of 2A12 aluminum alloy[J]. Acta Ordnance Engineering Sinica, 2013, 34 (3): 276- 282
16 ZHOU L, HUANG S T, WANG D, et al Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools[J]. International Journal of Advanced Manufacturing Technology, 2011, 52 (5–8): 619- 626
doi: 10.1007/s00170-010-2776-2
17 郑伟, 刘岭, 张群, 等 SiCp/Al复合材料超声磨削表面缺陷形成机理仿真研究[J]. 固体火箭技术, 2019, 42 (6): 793- 800
ZHENG Wei, LIU Ling, ZHANG Qun, et al Simulation study on the formation mechanism of surface defects in ultrasonic grinding of SiCp/Al composite materials[J]. Solid Rocket Technology, 2019, 42 (6): 793- 800
18 WANG T, XIE L J, WANG X B Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite[J]. International Journal of Advanced Manufacturing Technology, 2015, 79 (5–8): 1185- 1194
doi: 10.1007/s00170-015-6876-x
19 XIANG D H, SHI Z L, FENG H R, et al Finite element analysis of ultrasonic assisted milling of SiCp/Al composites[J]. International Journal of Advanced Manufacturing Technology, 2019, 105 (7/8): 3477- 3488
20 DANDEKAR C R, SHIN Y C Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42 (4): 35- 63
21 CHANDRA N, LI H, SHET C, et al Some issues in the application of cohesive zone models for metal-ceramic interfaces[J]. International Journal of Solids and Structures, 2002, 39 (10): 2827- 2855
doi: 10.1016/S0020-7683(02)00149-X
22 DANDEKAR C R, SHIN Y C Multiphase finite element modeling of machining unidirectional composites. prediction of debonding and fiber damage[J]. Journal of Manufacturing Science and Engineering Transactions of the ASME, 2008, 130 (5): 051016
doi: 10.1115/1.2976146
23 ZHANG H, RAMESH K C Effects of interfacial de-bonding on the rate-dependent response of metal matrix composites[J]. Acta Materialia, 2005, 53 (17): 4687- 4700
doi: 10.1016/j.actamat.2005.07.004
24 OZEL T The influence of friction models on finite element simulations of machining[J]. International Journal of Machine Tools Manufacture, 2006, 46 (5): 518- 530
doi: 10.1016/j.ijmachtools.2005.07.001
[1] 王泓晖,房鑫,李德江,刘贵杰. 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报(工学版), 2021, 55(2): 280-288.
[2] 李中南,朱海波,赵阳,罗雪,徐荣桥. 装配式桥墩温度应力分析与裂纹控制[J]. 浙江大学学报(工学版), 2021, 55(1): 46-54.
[3] 赵佳雷,周叮,张建东,胡朝斌. 基于Chebyshev-Ritz法分析多裂纹梁自振特性[J]. 浙江大学学报(工学版), 2020, 54(4): 778-786.
[4] 廖小伟,王元清,吴剑国,石永久. 低温环境下十字形非传力角焊缝接头的疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2018-2026.
[5] 黄祖慰,雷俊卿,桂成中,郭殊伦. 斜拉桥正交异性钢桥面板疲劳试验研究[J]. 浙江大学学报(工学版), 2019, 53(6): 1071-1082.
[6] 章涵,胡新丽,吴爽爽. 基于傅里叶近似法的S-RM细观损伤过程研究[J]. 浙江大学学报(工学版), 2019, 53(10): 1955-1965.
[7] 徐文帅, 杨连枝, 高阳. 二维十次对称压电准晶含Griffith裂纹的平面问题[J]. 浙江大学学报(工学版), 2018, 52(3): 487-496.
[8] 秦洪远, 刘一鸣, 黄丹. 脆性多裂纹扩展问题的近场动力学建模分析[J]. 浙江大学学报(工学版), 2018, 52(3): 497-503.
[9] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960.
[10] 江南, 陈民铀, 徐盛友, 赖伟, 高兵. 计及裂纹损伤的IGBT模块热疲劳失效分析[J]. 浙江大学学报(工学版), 2017, 51(4): 825-833.
[11] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[12] 杨丹, 甘春标, 杨世锡, 王跃华. 一类初弯曲转子的裂纹-碰摩故障响应分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1496-1501.
[13] 陈越超, 周晓军, 杨辰龙, 李钊. L型CFRP构件R区微观形态及孔隙特征[J]. 浙江大学学报(工学版), 2014, 48(10): 1775-1880.
[14] 杨涛,邹道勤. 基于XFEM的钢筋混凝土梁开裂数值模[J]. J4, 2013, 47(3): 495-501.
[15] 张鹏伟,刘震涛,李建锋,李京鲁,俞小莉. 基于应变相对变化量的机体疲劳裂纹识别方法[J]. J4, 2012, 46(5): 948-953.