Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (7): 1245-1252    DOI: 10.3785/j.issn.1008-973X.2021.07.003
机械工程     
高空作业平台臂架伸缩运动的横向振动特性
纪爱敏(),王豪,邓铭,张磊
河海大学 机电工程学院,江苏 常州 213022
Lateral vibration behaviors of boom expansion of aerial work platform
Ai-min JI(),Hao WANG,Ming DENG,Lei ZHANG
College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
 全文: PDF(1580 KB)   HTML
摘要:

为了探究高空作业平台做伸缩运动时变幅平面内的横向振动动力学特性,针对臂架的实际搭接和支承情况,将臂架等效为根部铰接、中间弹性支承且带有集中参数的变截面变长度梁. 基于牛顿第二定律建立各臂段的运动微分方程,采用模态叠加法、结合边界条件求解臂架一系列时刻的瞬态振型函数,曲线拟合时变参数以近似表示梁的振型,并依据伽辽金截断方法,得到广义坐标下的状态空间方程. 在Matlab/Simulink环境下进行动态仿真,得到伸缩过程中臂架头部的变幅平面横向振动动态响应. 结果表明,就横向振动振幅而言,搭接简化会带来15.63%计算结果误差;支承简化会加大臂架整体刚度、减小臂架振动响应,不可取。

关键词: 高空作业平台伸缩臂架牛顿第二定律状态空间振动特性    
Abstract:

The telescopic boom was treated as a variable section and variable length beam with concentrated parameters, pined at the end and flexibly supported in the middle, in order to investigate the luffing transverse plane dynamic behaviors of aerial work platforms during telescopic motion. Firstly based on Newton’s second law of motion, the differential equations of each arm were established. And then transient mode functions at a series of time points were obtained by using mode superposition method and boundary condition. After that the time-varying parameters of the mode function were fitted to approximately represent the mode of the beam. The state space equations of generalized coordinates could be built in terms of Galerkin truncation method. At last, the luffing plane transverse vibration response dynamic response of boom’s tip was simulated by using Matlab/Simulink during telescopic movement. Results show that as far as the amplitude of lateral vibration is concerned, the simplification of the connection situation will bring the calculation result error of 15.63%, and the simplification of support situation will increase the stiffness of the boom and reduce the response of vibration of the boom, which is not desirable.

Key words: aerial work platform    telescopic boom    Newton’s second law of movement    state space    vibration behaviors
收稿日期: 2020-01-13 出版日期: 2021-07-05
CLC:  TH 113  
基金资助: 国家自然科学基金资助项目(51805144,51175146);常州市高空作业装备与智能技术重点实验室开放基金资助项目(CLAI201805);中央高校基本科研业务费资助项目(2018B732X14);江苏省研究生科研与实践创新计划资助项目 (KYCX18_0539)
作者简介: 纪爱敏(1965—),男,博导,从事机械设计方面的研究. orcid.org/0000-0002-4189-6507. E-mail: jiam@hhuc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
纪爱敏
王豪
邓铭
张磊

引用本文:

纪爱敏,王豪,邓铭,张磊. 高空作业平台臂架伸缩运动的横向振动特性[J]. 浙江大学学报(工学版), 2021, 55(7): 1245-1252.

Ai-min JI,Hao WANG,Ming DENG,Lei ZHANG. Lateral vibration behaviors of boom expansion of aerial work platform. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1245-1252.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.003        https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1245

图 1  阀控双作用液压缸示意图
图 2  臂架结构的抽象模型
臂段编号 组合臂节 臂段编号 组合臂节
1 1 6 2、3
2 1、2 7 2、3、4
3 1、2、3 8 3
4 1、2、3、4 9 3、4
5 2 10 4
表 1  臂段及其臂节组合
臂号 Li/m ρai/(kg·m?1 EIi/(N·m2 mc/kg Jc/(kg·m2
1 9.43 79.50 1.14 $ \times $108 365.42 1736.62
2 10.82 66.12 6.50 $ \times $107 365.42 1736.62
3 10.81 55.05 3.88 $ \times $107 365.42 1736.62
4 11.07 44.13 2.10 $ \times $107 365.42 1736.62
表 2  臂架结构参数
图 3  臂架初始搭接组合
图 4  臂架最终搭接组合
图 5  主伸缩缸的加速度、速度、位移曲线
图 6  各臂段长度变化图
图 7  频率特征值拟合曲线
图 8  臂段10的一阶振型函数系数拟合曲线
图 9  臂段10的二阶振型函数系数拟合曲线
图 10  2种搭接处理情况的臂架头部振动响应
图 11  2种支承处理情况的臂架头部振动响应
1 高凌翀, 滕儒民, 王欣 直臂高空作业平台臂架系统振动特性研究[J]. 振动与冲击, 2016, 35 (10): 225- 230
GAO Ling-chong, TENG Ru-min, WANG Xin Vibration behaviors of the boom system of a telescopic boom aerial work platform[J]. Journal of Vibration and Shock, 2016, 35 (10): 225- 230
2 PERTSCH A, ZIMMERT N, SAWODNY O. Modeling a fire-rescue turntable ladder as piecewise Euler-Bernoulli beam with a tip mass [C]// 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai: [s.n.], 2009: 7321-7326.
3 PERTSCH, A, SAWODNY O Modelling and control of coupled bending and torsional vibrations of an articulated aerial ladder[J]. Mechatronics, 2016, 33: 34- 48
doi: 10.1016/j.mechatronics.2015.11.009
4 王豪, 纪爱敏, 张磊, 等 高空作业平台臂架变幅振动特性研究[J]. 振动与冲击, 2020, 39 (8): 40- 46
WANG Hao, JI Ai-min, ZHANG Lei, et al Research on amplitude-changing vibration characteristics of aerial work platform boom[J]. Journal of Vibration and Shock, 2020, 39 (8): 40- 46
5 黄日龙, 田常录, 谢家学 擦窗机伸缩臂的振动响应分析[J]. 江南大学学报: 自然科学版, 2014, 13 (2): 184- 188
HUANG Ri-long, TIAN Chang-lu, XIE Jia-xue Vibration response analysis of Gondola telescopic boom[J]. Journal of Jiangnan University: Natural Science Edition, 2014, 13 (2): 184- 188
6 杜文正, 张金星, 姚晓光, 等 特种起重机伸缩臂振动特性建模分析与试验[J]. 振动与冲击, 2016, 35 (22): 169- 175
DU Wen-zheng, ZHANG Jin-xing, YAO Xiao-guang, et al Mathematical vibration model and experiments of special telescopic crane boom[J]. Journal of Vibration and Shock, 2016, 35 (22): 169- 175
7 RAFTOYIANNIS I G, MICHALTSOS G T Dynamic behavior of a cantilevered cranes boom[J]. International Journal of Structural Stability and Dynamics, 2013, 13 (1): 1350010
doi: 10.1142/S0219455413500107
8 马国亮, 徐明龙, 陈立群, 等 末端质量作用下变长度轴向运动梁的振动特性[J]. 应用数学和力学, 2015, 36 (9): 897- 904
MA Guo-liang, XU Ming-long, CHEN Li-qun, et al Vibration characteristics of an axially moving variable length beam with a tip mass[J]. Applied Mathematics and Mechanics, 2015, 36 (9): 897- 904
9 王亮, 陈怀海, 贺旭东, 等 轴向运动变长度悬臂梁的振动控制[J]. 振动工程学报, 2009, 22 (6): 565- 570
WANG Liang, CHEN Huai-hai, HE Xu-dong, et al Vibration control of an axially moving cantilever beam with varying length[J]. Journal of Vibration Engineering, 2009, 22 (6): 565- 570
doi: 10.3969/j.issn.1004-4523.2009.06.002
10 王亮. 轴向运动梁动力学及控制研究[D]. 南京: 南京航空航天大学, 2012: 29-34.
WANG Liang. Study on the dynamics and control of axially moving beams [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 29-34.
11 ZHU W D, NI J, HUANG J Active control of translating media with arbitrarily varying length[J]. Journal of Vibration and Acoustics, 2001, 123 (1): 347- 358
12 ZHU W D, NI J Energetics and stability of translating media with an arbitrarily varying length[J]. Journal of Vibration and Acoustics, 2000, 122 (7): 247- 357
13 齐亚峰, 刘宁, 杨国来 轴向运动简支梁振动响应分析[J]. 兵器装备工程学报, 2016, 37 (12): 126- 129
QI Ya-feng, LIU Ning, YANG Guo-lai Vibration response analysis of a simply supported beam in axial motion[J]. Journal of Ordnance Equipment Engineering, 2016, 37 (12): 126- 129
doi: 10.11809/scbgxb2016.12.029
14 吉利科, 张伟, 叶敏, 等 液压弹簧及其在液压控制中的应用研究[J]. 液压气动与密封, 2018, 38 (8): 44- 47
JI Li-ke, ZHANG Wei, YE Min, et al Research on the hydraulic spring and its application for the hydraulic control system[J]. Hydraulics Pneumatics and Seals, 2018, 38 (8): 44- 47
doi: 10.3969/j.issn.1008-0813.2018.08.013
[1] 黄伟明,王金昌,徐日庆,杨仲轩,徐荣桥. 基于弹性地基曲梁理论的盾构隧道管片分析方法[J]. 浙江大学学报(工学版), 2020, 54(4): 787-795.
[2] 欧阳光,李田军,张江涛,汪劲丰,徐荣桥. 基于状态空间法的分段变截面吊杆张拉力分析[J]. 浙江大学学报(工学版), 2020, 54(2): 257-263.
[3] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[4] 鲍学英,郑雨茜,王起才. 绿色施工下的深路堑施工群综合承载度分析[J]. 浙江大学学报(工学版), 2019, 53(3): 482-491.
[5] 刘承斌, 刘文耀, 陈伟球, 王惠明, 吕朝锋. 基于L-S理论的压电球壳广义热冲击分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1185-1193.
[6] 张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢. 考虑热机耦合的排气歧管多目标优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1153-1162.
[7] 袁庆伟, 赵荣祥. 改善IPMSM动静态性能的定子磁链矢量控制方案[J]. 浙江大学学报(工学版), 2017, 51(12): 2420-2428.
[8] 金鑫, 梁军. 基于动态PLS框架的多变量无静差预测控制[J]. 浙江大学学报(工学版), 2016, 50(4): 750-758.
[9] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[10] 黄伟,王家序,徐涛,肖科,李俊阳,吴会超. 金属橡胶复合齿轮副振动特性分析及实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2231-2238.
[11] 张俊超, 岳茂雄, 刘华锋. 结构先验约束的动态PET图像重建[J]. J4, 2012, 46(6): 961-966.
[12] 丁勇, 谢旭, 苟昌焕, 黄剑源. 钢桥交通振动计算方法与动力特性研究[J]. J4, 2012, 46(6): 1107-1114.
[13] 刘承斌, 边祖光, 陈伟球. 叠层压电球壳的三维热释电分析[J]. J4, 2011, 45(6): 1067-1073.
[14] 王建中, 金波, 鲁仁全. 基于渗漏模型的城市排水系统建模与分析[J]. J4, 2010, 44(7): 1382-1386.
[15] 王光庆. 微型超声波电机定子振动特性有限元分析[J]. J4, 2009, 43(7): 1273-1278.