Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 257-263    DOI: 10.3785/j.issn.1008-973X.2020.02.006
土木与交通工程     
基于状态空间法的分段变截面吊杆张拉力分析
欧阳光1(),李田军2,张江涛1,汪劲丰1,徐荣桥1,*()
1. 浙江大学 土木工程系,浙江 杭州 310058
2. 中国地质大学(武汉) 工程学院,湖北 武汉 430074
Tension analysis of hangers with stepped cross-section based on state space method
Guang OUYANG1(),Tian-jun LI2,Jiang-tao ZHANG1,Jing-feng WANG1,Rong-qiao XU1,*()
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
2. Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
 全文: PDF(808 KB)   HTML
摘要:

针对分段变截面拱桥吊杆的动力特性,采用受轴向张拉力作用的Euler-Bernoulli梁理论建立分析模型,开发基于状态空间法的精确分析方法. 该方法详细考虑吊杆各部分不同的截面特性和材料参数,以及吊杆两端实际较为复杂的边界条件,给出吊杆自由振动的频率与其张拉力的关系,为基于频率法的吊杆张拉力测试方法提供理论基础. 通过某实际拱桥的吊杆张拉力测试数据以及有限元分析结果,验证所提方法. 当吊杆的索体长度大于阈值时,吊杆的有效计算长度与吊杆的实际索体长度存在着较强的线性关系,因此可将本研究方法与经典弦理论公式相结合,识别与索体长度相关的吊杆有效计算长度,可在实际工程中运用弦理论公式方便地计算吊杆张拉力.

关键词: 分段变截面吊杆张拉力频率法状态空间法有效长度    
Abstract:

An accurate analysis method based on the state space method was developed for the dynamic characteristics of hangers with stepped cross-section for arch bridges using the theory of Euler-Bernoulli beam with axial force. The different cross-section characteristics and material parameters of each part of hangers can be considered in detail as well as the complicated boundary conditions at both ends of the hangers in practical engineering. The relationship of the free vibration frequencies and tension of hangers can then be obtained. It provides a theoretical basis for the so-called frequency method to measure the tension of hangers. The method was verified by the in-situ testing data of tension forces and the results of finite element analysis for the hangers of a practical arch bridge. When the length of the cable segment of a hanger is greater than a certain threshold, a strong linear relation between the effective calculation length of the hanger and the realistic length of the cable segment of the hanger exists. As a result, this method can be combined with the classical string theory, and the effective length of the hanger related to the realistic length of the cable segment can be identified. The classical string theory can be used to calculate the tension of hangers conveniently in practical engineering.

Key words: hanger with stepped cross-section    tension    frequency method    state space method    effective length
收稿日期: 2019-01-12 出版日期: 2020-03-10
CLC:  TU 311  
基金资助: 国家自然科学基金资助项目(51478422)
通讯作者: 徐荣桥     E-mail: ouyangguang@zju.edu.cn;xurongqiao@zju.edu.cn
作者简介: 欧阳光(1993―),男,硕士,从事桥梁索力计算研究. orcid.org/0000-0002-5011-655X. E-mail: ouyangguang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
欧阳光
李田军
张江涛
汪劲丰
徐荣桥

引用本文:

欧阳光,李田军,张江涛,汪劲丰,徐荣桥. 基于状态空间法的分段变截面吊杆张拉力分析[J]. 浙江大学学报(工学版), 2020, 54(2): 257-263.

Guang OUYANG,Tian-jun LI,Jiang-tao ZHANG,Jing-feng WANG,Rong-qiao XU. Tension analysis of hangers with stepped cross-section based on state space method. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 257-263.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.006        http://www.zjujournals.com/eng/CN/Y2020/V54/I2/257

图 1  拱桥吊杆示意图
图 2  拱桥的分段变截面吊杆的梁模型
参数 Ai /(10?2 m2 Ii /(10?6 m4 Li /m
上叉耳(开叉) 2.09 84.30 0.300
上叉耳(实心) 3.74 151.00 0.136
上锚头 3.55 3.89 0.260
下锚头 3.55 3.89 0.260
连接头 1.77 24.90 0.147
调节套筒 1.77 24.90 0.462
下叉耳(实心) 3.74 151.00 0.136
下叉耳(开叉) 2.09 84.30 0.300
表 1  吊杆的几何参数
吊杆编号 T/kN f0 /Hz fT /Hz fF /Hz
1)注:括号内数据为本研究结果相对实测结果的误差;2)注:括号内数据为本研究结果相对有限元结果的误差
1# 58.8 10.778 11.328(?4.86%)1) 10.708(0.65%)2)
2# 147.0 12.636 13.477(?6.24%) 12.616(0.16%)
3# 333.2 15.069 14.844(1.52%) 15.042(0.18%)
4# 254.8 16.288 15.527(4.90%) 16.287(0.01%)
5# 390.5 21.929 21.582(1.61%) 21.921(0.04%)
6# 174.4 19.490 19.531(?0.21%) 19.503(?0.07%)
表 2  本研究方法计算所得基频与现场实测、有限元分析结果的比较
图 3  吊杆1#~6#的一阶振型
lc /m f1 /Hz l0 /m l0 /lc (0.984lc+0.339)/m T1 /kN [(T1?T0)/T0]/%
0.5 37.118 2.002 4.005 ? ? ?
1.0 33.294 2.232 2.232 ? ? ?
1.5 30.847 2.409 1.606 ? ? ?
2.0 28.236 2.632 1.316 ? ? ?
2.5 25.194 2.950 1.180 ? ? ?
3.0 22.174 3.352 1.117 3.291 289.211 ?3.60
3.5 19.561 3.800 1.086 3.783 297.364 ?0.88
4.0 17.407 4.270 1.067 4.275 300.717 0.24
4.5 15.643 4.751 1.056 4.767 301.982 0.66
5.0 14.187 5.239 1.048 5.259 302.297 0.77
5.5 12.970 5.730 1.042 5.751 302.169 0.72
6.0 11.942 6.224 1.037 6.243 301.834 0.61
6.5 11.061 6.719 1.034 6.735 301.409 0.47
7.0 10.301 7.216 1.031 7.227 300.952 0.32
7.5 9.637 7.713 1.028 7.719 300.494 0.16
8.0 9.053 8.210 1.026 8.211 300.051 0.02
8.5 8.535 8.708 1.025 8.703 299.629 ?0.12
9.0 8.073 9.207 1.023 9.195 299.231 ?0.26
9.5 7.658 9.705 1.022 9.687 298.859 ?0.38
10.0 7.284 10.204 1.020 10.179 298.511 ?0.50
表 3  吊杆有效计算长度的识别结果
图 4  有效计算长度与索体长度的关系
1 KO J M, NI Y Q Technology developments in structural health monitoring of large-scale bridges[J]. Engineering Structures, 2005, 27 (12): 1715- 1725
doi: 10.1016/j.engstruct.2005.02.021
2 陈鲁, 张其林, 吴明儿 索结构中拉索张力测量的原理与方法[J]. 工业建筑, 2006, 36 (1): 368- 371
CHEN Lu, ZHANG Qi-lin, WU Ming-er Principle and method of measuring cable tension in a cable structures[J]. Industrial Construction, 2006, 36 (1): 368- 371
3 IRVINE H M, CAUGHEY T K The linear theory of free vibrations of a suspended cable[J]. Proceedings of the Royal Society A, 1974, 341 (1626): 299- 315
doi: 10.1098/rspa.1974.0189
4 KRONEBERGER-STANTON K J, HARTSOUGH B R A monitor for indirect measurement of cable vibration frequency and tension[J]. Transaction of the ASCE, 1992, 35 (1): 341- 346
doi: 10.13031/2013.28609
5 CASAS J R A combined method for measuring cable forces: the cable-stayed Alamillo Bridge, Spain[J]. Structural Engineering International, 1994, 4 (94): 235- 240
6 RUSSELL J C, LARDNERZ T J Experimental determination of frequencies and tension for elastic cables[J]. Journal of Engineering Mechanics, 1998, 124 (10): 1067- 1072
doi: 10.1061/(ASCE)0733-9399(1998)124:10(1067)
7 CUNHA A, CAETANO E, DELGADO R Dynamic tests on large cable-stayed bridge[J]. Journal of Bridge Engineering, 2001, 6 (1): 54- 62
doi: 10.1061/(ASCE)1084-0702(2001)6:1(54)
8 REN W X, CHEN G, HU W H Empirical formulas to estimate cable tension by cable fundamental frequency[J]. Structural Engineering and Mechanics, 2005, 20 (20): 363- 380
9 KIM B H, PARK T Estimation of cable tension force using the frequency-based system identification method[J]. Journal of Sound and Vibration, 2007, 304 (3?5): 660- 676
doi: 10.1016/j.jsv.2007.03.012
10 FANG Z, WANG J Q Practical formula for cable tension estimation by vibration method[J]. Journal of Bridge Engineering, 2012, 17 (1): 161- 164
doi: 10.1061/(ASCE)BE.1943-5592.0000200
11 CHEN C C, WU W H, LEU M R, et al Tension determination of stay cable or external tendon with complicated constraints using multiple vibration measurements[J]. Measurement, 2016, 86: 182- 195
doi: 10.1016/j.measurement.2016.02.053
12 姚文斌, 何天淳, 王锋 斜拉桥拉索索力测定的新方法[J]. 仪器仪表学报, 2001, 22 (增2): 90- 91
YAO Wen-bin, HE Tian-chun, WANG Feng A new method determining cable tension on cable-stayed bridge[J]. Chinese Journal of Scientific Instrument, 2001, 22 (增2): 90- 91
13 SUMITRO S, KUROKAWA S, SHIMANO K, et al Monitoring based maintenance utilizing actual stress sensory technology[J]. Smart Materials and Structures, 2005, 14 (3): S68
doi: 10.1088/0964-1726/14/3/009
14 SUMITRO S, WANG M L Sustainable structural health monitoring system[J]. Structural Control and Health Monitoring, 2010, 12 (3/4): 445- 467
15 NAGULESWARAN S Vibration of an Euler–Bernoulli beam on elastic end supports and with up to three step changes in cross-section[J]. International Journal of Mechanical Sciences, 2002, 44 (12): 2541- 2555
doi: 10.1016/S0020-7403(02)00190-X
16 NAGULESWARAN S Vibration and stability of an Euler-Bernoulli beam with up to three-step changes in cross-section and in axial force[J]. International Journal of Mechanical Sciences, 2003, 45 (9): 1563- 1579
doi: 10.1016/j.ijmecsci.2003.09.001
17 LEE J W, LEE J Y Free vibration analysis using the transfer-matrix method on a tapered beam[J]. Computers and Structures, 2016, 164 (C): 75- 82
18 BANERJEE J R Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method[J]. Journal of Sound and Vibration, 2000, 233 (5): 857- 875
doi: 10.1006/jsvi.1999.2855
19 NAGEM R, WILLIAMSJR J Dynamic analysis of large space structures using transfer matrices and joint coupling matrices[J]. Journal of Structural Mechanics, 2012, 17 (3): 349- 371
20 方志, 张智勇 斜拉桥的索力测试[J]. 中国公路学报, 1997, (1): 51- 58
FANG Zhi, ZHANG Zhi-yong Test of cable tension in cable-stayed bridges[J]. China Journal of Highway and Transport, 1997, (1): 51- 58
21 刘文峰, 应怀樵, 柳春图 考虑刚度及边界条件的索力精确求解[J]. 振动与冲击, 2003, 22 (4): 12- 14
LIU Wen-feng, YING Huai-qiao, LIU Chun-tu Precise solution of cable tensile force in consideration of cable stiffness and its boundary conditions[J]. Journal of Vibration and Shock, 2003, 22 (4): 12- 14
doi: 10.3969/j.issn.1000-3835.2003.04.004
[1] 黄伟明,王金昌,徐日庆,杨仲轩,徐荣桥. 基于弹性地基曲梁理论的盾构隧道管片分析方法[J]. 浙江大学学报(工学版), 2020, 54(4): 787-795.
[2] 刘承斌, 刘文耀, 陈伟球, 王惠明, 吕朝锋. 基于L-S理论的压电球壳广义热冲击分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1185-1193.
[3] 李智宁, 韩同春, 豆红强, 邱子义. 螺旋土钉钻进成孔扭矩分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1426-1433.
[4] 刘承斌, 边祖光, 陈伟球. 叠层压电球壳的三维热释电分析[J]. J4, 2011, 45(6): 1067-1073.