Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2125-2133    DOI: 10.3785/j.issn.1008-973X.2021.11.013
能源与动力工程     
基于映射模型的城市热网热能输运灵活性研究
陈嘉映1(),李仲博1,2,林小杰1,3,*(),刘荣2,钟崴1,俞自涛1
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027
2. 北京市热力集团有限责任公司,北京 100028
3. 浙江大学常州工业技术研究院,江苏 常州 213022
Study of heat transportation flexibility in urban heating network based on mapping model
Jia-ying CHEN1(),Zhong-bo LI1,2,Xiao-jie LIN1,3,*(),Rong LIU2,Wei ZHONG1,Zi-tao YU1
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
2. Beijing District Heating Group, Beijing 100028, China
3. Changzhou Industrial Technology Research Institute of Zhejiang University, Changzhou 213022, China
 全文: PDF(1553 KB)   HTML
摘要:

为了分析源荷不确定下的热网热能灵活输运问题,开展基于映射模型的城市热网热能输运灵活性研究. 采用机理建模与运行数据辨识结合的热网高精度映射建模方法,建立与物理热网行为特性一致的映射模型,通过模型特征参数估计,提高仿真计算精度. 同时,在此基础上提出量化分析热能输配灵活性的方法. 结合某北方城市热网开展多样化供需组合条件下的灵活性定量评估,并将该分析方法与现有管网可靠度理论进行对比. 对23个热力站开展灵活性与管网可靠度分析,对比结果表明,灵活性更侧重分析管网整体的灵活输运能力,可以用于管网输运瓶颈的分析,可靠度更侧重分析热网中元件本身的属性,可以用于管道容量及可靠性的分析. 该灵活性分析方法可以为提升热网调控灵活性奠定理论基础.

关键词: 城市热网集中供热系统映射模型输运灵活性供需平衡    
Abstract:

The theory of heat transportation flexibility in the urban heating network was developed based on the mapping model to analyze heat transportation flexibility with the uncertainty of source and load. Firstly, the high-precision mapping modeling technology combining mechanism model and data identification was adopted to establish the mapping model reflecting the operation characteristics of the actual heating system. The accuracy of simulation calculation was improved through model feature parameter estimation. Secondly, a quantitative method for the flexibility analysis of heat transportation was proposed on the above basis. Finally, flexibility evaluation in a heating network in a northern city under conditions of diverse supply and demand combinations was carried out. Moreover, the flexibility results were compared with that of the existing reliability theory of the pipe network. The flexibility and the reliability of 23 heating substations were analyzed, and results show that flexibility analysis focuses more on the overall flexible transport capacity of the network, which can be used to the analysis of the transport bottleneck. Reliability focuses more on analyzing the properties of the components in the heating network, which can be used to analyze the capacity and the reliability of the pipeline. Flexibility evaluation lays a preliminary theoretical foundation for improving the dispatch flexibility of heating network.

Key words: urban heating network    centralized heating system    mapping model    transportation flexibility    supply and demand balance
收稿日期: 2020-10-24 出版日期: 2021-11-05
CLC:  TK 11  
基金资助: 国家重点研发计划资助项目(2019YFE0126000);国家自然科学基金资助项目(51806190)
通讯作者: 林小杰     E-mail: jiayingchen@zju.edu.cn;xiaojie.lin@zju.edu.cn
作者简介: 陈嘉映(1994—),女,博士生,从事城市集中热系统的灵活性研究. orcid.org/0000-0002-1055-0423. E-mail: jiayingchen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈嘉映
李仲博
林小杰
刘荣
钟崴
俞自涛

引用本文:

陈嘉映,李仲博,林小杰,刘荣,钟崴,俞自涛. 基于映射模型的城市热网热能输运灵活性研究[J]. 浙江大学学报(工学版), 2021, 55(11): 2125-2133.

Jia-ying CHEN,Zhong-bo LI,Xiao-jie LIN,Rong LIU,Wei ZHONG,Zi-tao YU. Study of heat transportation flexibility in urban heating network based on mapping model. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2125-2133.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.013        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2125

图 1  热能输运灵活性评估流程
图 2  热网热能输运过程原理示意图
图 3  基于有限观测量点的热网特征参数辨识
图 4  热网映射模型的构建方法
图 5  目标热网拓扑结构
图 6  供水压力实测值与计算值对比
图 7  回水压力实测值与计算值对比
图 8  供回水压力实测值与计算值误差统计
图 9  热网灵活性分布
图 10  热网管道可靠度
图 11  热网管道可靠度分布
图 12  热网局部管道编号分布图
IDp2 Rp IDp11 Rp
93 0.998 238 0.998
92 0.999 239 0.995
91 0.999 240 0.997
90 0.993 241 0.998
89 0.998 51 0.990
88 0.954 50 0.979
87 0.988 49 0.999
86 0.978 48 0.973
85 0.996 47 0.995
84 0.998 46 0.997
表 1  2号热力站和11号热力站上游管道可靠度
1 中华人民共和国住房和城乡建设部. 中国城市建设统计年鉴[M]. 北京: 中国计划出版社, 2017.
2 江亿. 我国供热行业发展状况[R]. [s.l.]: 2020年全国供热学术年会报告, 2020.
3 WANG D, ZHI Y, JIA H, et al Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes[J]. Applied Energy, 2019, 240: 341- 358
doi: 10.1016/j.apenergy.2019.01.199
4 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2015[M]. 北京: 中国建筑工业出版社, 2015.
5 李琦, 李梅 PSO优化在供热网络控制中的应用研究[J]. 计算机仿真, 2013, 30 (12): 294- 297
LI Qi, LI Mei Study and application of PSO in heating network control[J]. Computer Simulation, 2013, 30 (12): 294- 297
doi: 10.3969/j.issn.1006-9348.2013.12.069
6 郭洪武, 蒲雷, 张予燮, 等 基于粗糙集理论的风光蓄互补系统优化模型[J]. 浙江大学学报:工学版, 2019, 53 (4): 801- 810
GUO Hong-wu, PU Lei, ZHANG Yu-xie, et al Optimization model for integrated complementary system of wind-PV-pump storage based on rough set theory[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 801- 810
7 LUND H, WERNER S, WILTSHIRE R, et al 4th generation district heating (4GDH): integrating smart thermal grids into future sustainable energy systems[J]. Energy, 2014, 68 (4): 1- 11
8 王芃, 邹平华 供热管网连通可靠度研究[J]. 哈尔滨工业大学学报, 2011, 43 (8): 94- 97
WANG Peng, ZOU Ping-hua Connectedness reliability of district heating network[J]. Journal of Harbin Institute of Technology, 2011, 43 (8): 94- 97
doi: 10.11918/j.issn.0367-6234.2011.08.018
9 MARLIM M S, JEONG G, KANG D Identification of critical pipes using a criticality index in water distribution networks[J]. Applied Sciences, 2019, 9 (19): 4052
doi: 10.3390/app9194052
10 王芃. 基于图论的供热系统可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
WANG Peng. Reliability of district heating system based on graph theory [D]. Harbin: Harbin Institute of Technology, 2020.
11 王晓霞. 多热源环状热水管网故障工况及可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2004.
WANG Xiao-xia. Reliability research of multi-heat source ring-shaped heat-supply network under fault conditions[D]. Harbin: Harbin Institute of Technology, 2004.
12 North American Electric Reliability Corporation. Special report: potential reliability impacts of emerging flexible resources[R]. [s.l.]: North American Electric Reliability Corporation (NERC), 2010.
13 International Energy Agency. Empowering variable renewables-options for flexible electricity systems[M]. [s.l.]: OECD Publishing, 2009: l1-13.
14 肖定垚, 王承民, 曾平良, 等 电力系统灵活性及其评价综述[J]. 电网技术, 2014, 38 (6): 1569- 1576
XIAO Ding-yao, WANG Cheng-min, ZENG Ping-liang, et al Power system flexibility renewable energy load management and load response energy storage microgrid[J]. Power System Technology, 2014, 38 (6): 1569- 1576
15 鲁宗相, 李海波, 乔颖 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40 (13): 147- 158
LU Zong-xiang, LI Hai-bo, QIAO Ying High proportion of renewable energy flexibility evaluation multiple temporal and spatial scales power system planning[J]. Automation of Electric Power Systems, 2016, 40 (13): 147- 158
doi: 10.7500/AEPS20151215008
16 王鹏, 李宏仲, 吕风磊, 等 电力系统多时间尺度灵活性指标研究[J]. 电力建设, 2016, 37 (2): 57- 62
WANG Peng, LI Hong-zhong, LYU Feng-lei, et al Power system flexibility wind power uncertainty multi-time scale evaluation index[J]. Electric Power Construction, 2016, 37 (2): 57- 62
doi: 10.3969/j.issn.1000-7229.2016.02.008
17 ABDIN I F, ZIO E An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production[J]. Applied Energy, 2018, 222: 898- 914
doi: 10.1016/j.apenergy.2018.04.009
18 NIU J, TIAN Z, ZHU J, et al Implementation of a price-driven demand response in a distributed energy system with multi-energy flexibility measures[J]. Energy Conversion and Management, 2020, 208: 112575
doi: 10.1016/j.enconman.2020.112575
19 陈欢, 王红梅, 俞自涛, 等 自然循环槽式太阳能中高温集热系统实验研究[J]. 浙江大学学报:工学版, 2012, 46 (9): 1666- 1670
CHEN Huan, WANG Hong-mei, YU Zi-tao, et al PTC steam generation system natural circulation solar thermal utilization[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (9): 1666- 1670
doi: 10.3785/j.issn.1008-973X.2012.09.018
20 YILMAZ H Ü, KELES D, CHIODI A, et al Analysis of the power-to-heat potential in the European energy system[J]. Energy Strategy Reviews, 2018, 20: 6- 19
doi: 10.1016/j.esr.2017.12.009
21 HANMIN C, CHARALAMPOS Z, SHI Y, et al Demand side management in urban district heating networks[J]. Applied Energy, 2018, 230: 506- 518
doi: 10.1016/j.apenergy.2018.08.105
22 唐雅洁, 江全元, 程中林, 等 可扩展型微电网SCADA系统关键技术[J]. 浙江大学学报:工学版, 2018, 52 (8): 1558- 1565
TANG Ya-jie, JIANG Quan-yuan, CHENG Zhong-lin, et al Microgrids SCADA service encapsulation integrated modeling scalable design[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (8): 1558- 1565
23 ZHONG W, CHEN J, ZHOU Y, et al Network flexibility study of urban centralized heating system: concept, modeling and evaluation[J]. Energy, 2019, 177: 334- 346
doi: 10.1016/j.energy.2019.04.081
[1] 倪玉国,周昊,胡世豪. 碱性氢氧化物消除NH4Cl积灰特性实验研究[J]. 浙江大学学报(工学版), 2021, 55(7): 1361-1367.
[2] 张佳凯,聂立,岑可法,蒋啸,周昊. 生物质秸秆与神府烟煤掺烧结渣特性的在线监测[J]. 浙江大学学报(工学版), 2020, 54(10): 1955-1963.
[3] 周昊,白子贤,陈振寰,张佳凯. NH3和SO3混合气氛下的灰沉积生长特性[J]. 浙江大学学报(工学版), 2020, 54(2): 389-397.
[4] 田付有,黄连锋,范利武,俞自涛,胡亚才. 双粒度混合烧结矿颗粒填充床压降实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2077-2086.
[5] 夏宇,仇性启,惠媛媛. 伴有参与性介质的开口系统传热研究[J]. 浙江大学学报(工学版), 2016, 50(7): 1367-1372.
[6] 徐焕祥,俞小莉,王雷,樊之鹏,窦文博,魏巍,李道飞. 压缩空气-燃油混合动力排气能量回收利用[J]. 浙江大学学报(工学版), 2016, 50(7): 1353-1359.
[7] 韩中合,白亚开,王继选. 冷冻氨脱碳机组流程仿真及其耦合方式优化[J]. 浙江大学学报(工学版), 2016, 50(3): 499-507.
[8] 徐焕祥, 李道飞, 王雷, 叶锦, 樊之鹏, 俞小莉. 回收余热能的气动/内燃复合循环效率[J]. 浙江大学学报(工学版), 2014, 48(4): 649-652.
[9] 孔祥强,林琳,李瑛, 杨前明. R410A直膨式太阳能热泵热水器性能研究[J]. J4, 2013, 47(9): 1666-1671.
[10] 孙大明, 王凯, 楼平, 赵益涛, 张学军, 邱利民. 斯特林型热声发动机驱动直线发电机的工作特性[J]. J4, 2013, 47(8): 1457-1462.
[11] 徐焕祥, 李道飞, 王雷, 叶锦, 樊之鹏, 俞小莉. 回收排气余热能的气动-内燃复合循环理论研究[J]. J4, 2013, 47(6): 1051-1056.
[12] 曲瑞陽,吴学成,高翔,吴迎春,陈玲红,G. Grehan,岑可法. 数字显微全息中颗粒重建数值模拟[J]. J4, 2012, 46(9): 1647-1653.