Please wait a minute...
J4  2012, Vol. 46 Issue (9): 1647-1653    DOI: 10.3785/j.issn.1008-973X.2012.09.015
能源工程     
数字显微全息中颗粒重建数值模拟
曲瑞陽1,吴学成1,高翔1,吴迎春1,陈玲红1,G. Grehan2,岑可法1
1. 浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027; 2. 法国国家科研中心CNRS鲁昂大学法国国家应用
科学研究院鲁昂分院 CORIA研究所,鲁昂 法国 76801
Numerical simulation of particle reconstruction 
in digital holographic microscopy
QU Rui-yang1, WU Xue-cheng1, GAO Xiang1, WU Ying-chun1, CHEN Ling-hong1,
Gréhan2 G, CEN Ke-fa1
1.State Key Laboratory of Clean Energy Utilization ,Zhejiang University, Hangzhou 310027, China;
2.UMR 6614/CORIA, CNRS – Université & INSA de Rouen, Rouen 76801, France
 全文: PDF  HTML
摘要:

采用数值模拟方法研究了颗粒空间位置及间距对显微全息测量结果(颗粒位置和粒径)的影响,分别考察了颗粒在平行和垂直光轴方向上,电荷耦合元件(CCD)平面内不同间距和不同粒径情况下的颗粒重建结果,讨论了灰度阈值对颗粒识别的影响,并结合实验对实际拍摄得到的颗粒全息图进行重建分析.结果表明:在垂直光轴方向上,当记录距离分别为5、50、100 μm时,可以识别出粒径均为1 μm的双颗粒的最小间距分别对应为1 、2 、2 μm;在平行光轴方向上,记录距离分别为5、50、100 μm时,可以识别出粒径均为1 μm的双颗粒的最小间距分别对应为2 、8 、16 μm;在重建过程中,灰度阈值应设定为不小于0.5.

Abstract:

The influence of particle position and distance on the results of measurement (positioning and diameter measurement) was investigated. Reconstruction results of particles in the plane of Charge-coupled Device (CCD) with different distances and diameters in parallel with optical axis and perpendicular to optical axis were studied, respectively. The influence of gray threshold on particle recognition was discussed. Experimental hologram of particles were also reconstructed and analyzed. Results showed that the minimum recognized distances perpendicular to optical axis of two particles with 1 μm in diameter were 1 μm, 2 μm, 2 μm, related to the recording distances of 5 μm, 50 μm, 100 μm, respectively. The minimum recognized distances in parallel with optical axis of two particles with 1 μm in diameter were 2 μm, 8 μm, 16 μm, related to the recording distances of 5 μm, 50 μm, 100 μm, respectively. The gray threshold should be no smaller than 0.5 in the process of reconstruction.

出版日期: 2012-09-01
:  TK 11  
基金资助:

国家自然科学基金资助项目(51176162, 51125025);国家“973”重点基础研究发展规划资助项目(2009CB219802); 高等学校学科创新引智计划资助项目(B08026).

通讯作者: 吴学成,男,副教授,博导.     E-mail: wuxch@zju.edu.cn
作者简介: 曲瑞陽(1988-), 男, 博士生. 从事大气污染控制的研究.E-mail: qury@zju.edu.cn 
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

曲瑞陽,吴学成,高翔,吴迎春,陈玲红,G. Grehan,岑可法. 数字显微全息中颗粒重建数值模拟[J]. J4, 2012, 46(9): 1647-1653.

QU Rui-yang,WU Xue-cheng,GAO Xiang,WU Ying-chun,CHEN Ling-hong,Gréhan G. Numerical simulation of particle reconstruction 
in digital holographic microscopy. J4, 2012, 46(9): 1647-1653.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.09.015        http://www.zjujournals.com/eng/CN/Y2012/V46/I9/1647

[1] MALSCH D, KIELPINSKI M, MERTHAN R, et al. mPIVAnalysis of Taylor flow in micro channels [J]. Chemical Engineering Journal, 2008, 135(Suppl.1): S166-S172.
[2] VAN STEIJN V, KREUTZER M T,KLEIJN C R. mPIV study of the formation of segmented flow in microfluidic Tjunctions [J]. Chemical Engineering Science, 2007, 62(24): 7505-7514.
[3] SHEEN H, HSU C, WU T, et al. Unsteady flow behaviors in an obstacletype valveless micropump by microPIV [J]. Microfluidics and Nanofluidics, 2008, 4(4): 331-342.
[4] KIM B J, LIU Y Z,SUNG H J. Micro PIV measurement of twofluid flow with different refractive indices [J]. Measurement Science and Technology, 2004, 15(6): 1097-1103.
[5] HAIGERMOSER C, SCARANO F,ONORATO M. Investigation of the flow in a circular cavity using stereo and tomographic particle image velocimetry [J]. Experiments in Fluids, 2009, 46(3): 517-526.
[6] WORTH N A,NICKELS T B. Acceleration of TomoPIV by estimating the initial volume intensity distribution [J]. Experiments in Fluids, 2008, 45(5): 847-856.
[7] ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry [J]. Experiments in Fluids, 2006, 41(6): 933-947.
[8] DEPEURSINGE C D, CUCHE E, MARQUET P, et al. Digital holography applied to microscopy [C]∥ Practical Holography XVI and Holographic Materials VIII. San Jose, CA, USA:\
[s.n.\], 2002: 30-34.
[9] COPPOLA G, FERRARO P, IODICE M, et al. A digital holographic microscope for complete characterization of microelectromechanical systems [J]. Measurement Science and Technology, 2004, 15(3): 529-539.
[10] GARCIASUCERQUIA J, XU W, JERICHO S K, et al. Digital inline holographic microscopy applied to microfluidic studies [C]∥ Microfluidics, BioMEMS, and Medical Microsystems IV. San Jose, CA, USA:\
[s.n.\], 2006: 61120M-9.
[11] KIM S,LEE S J. Measurement of dean flow in a curved microtube using micro digital holographic particle tracking velocimetry [J]. Experiments in Fluids, 2009, 46(2): 255-264.
[12] SORIA J,ATKINSON C. Towards 3C3D digital holographic fluid velocity vector field measurementtomographic digital holographic PIV(TomoHPIV) [J]. Measurement Science and Technology, 2008, 19(7): 074002.
[13] SHENG J, MALKEIL E,KATZ J. Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer [J]. Experiments in Fluids, 2008, 45(6):1023-1035.
[14] YU L, MOHANTY S, ZHANG J, et al. Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery [J]. Optics Express, 2009, 17(14): 12031-12038.
[15] CHOI YS,LEE SJ. Threedimensional volumetric measurement of red blood cell motion using digital holographic microscopy [J]. Applied Optics, 2009, 48(16): 2983-2990.
[16] EMERY Y, CUCHE E, COLOMB T, et al. DHM (Digital Holography Microscope) for imaging cells [J]. Journal of Physics: Conference Series, 2007, 61:1317-1321.
[17] EMERY Y, CUCHE E, MARQUET F, et al. Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution [C]∥ Optical Measurement Systems for Industrial Inspection IV. Munich, Germany:\
[s.n.\], 2005: 930-937.
[18] WU X C, GR HAN G, MEUNIERGUTTINCLUZEL S, et al. Sizing of particles smaller than 5 μm in digital holographic microscopy [J]. Optics Letters, 2009, 34(7): 857-859.
[19] WU X C, GR HAN G, MEUNIERGUTTINCLUZEL S, et al. Numerical investigation of nearfield offaxis scattering inline recording particle holography [C]∥ 15th Int Symp on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal:\
[s.n.\], 2010.
[20] ZHANG Y, SHEN G, SCHRODER A, et al. Influence of some recording parameters on digital holographic particle image velocimetry [J]. Optical Engineering, 2006, 45(7): 075801-10.
[21] GOUESBET G, MAHEU B,GREHAN G. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation [J]. Journal of the Optical Society of America aOptics Image Science and Vision, 1988, 5(9): 1427-1443.
[22] SLIMANI F, GREHAN G, GOUESBET G, et al. Nearfield LorenzMie theory and its application to microholography [J]. Applied Optics, 1984, 23(22): 4140-4148.
[23] GREHAN G, WU X, MEUNIERGUTTINCLUZEL S, et al. Holographie et Microholographie : Un étalon numérique [C]∥ Congrès Francophone de Techniques Laser, CFTL 2010. VandoeuvrelèsNancy:\
[s.n.\], 2010.
[24] SCHNARS U,JUPTNER W. Direct recording of holograms by a CCDtarget and numerical reconstruction [J]. Applied Optics, 1994, 33(2): 179-181.
[25] SCHNARS U,JUPTNER W P O. Digital recording and numerical reconstruction of holograms [J]. Measurement Science & Technology, 2002, 13(9): R85-R101.
[26] LEBRUN D, BELAD S,ZKUL C. Hologram reconstruction by use of optical wavelet transform [J]. Applied Optics, 1999, 38(17): 3730-3734.
[27] BURAGALEFEBVRE C, COETMELLEC S, LEBRUN D, et al. Application of wavelet transform to hologram analysis: threedimensional location of particles [J]. Optics and Lasers in Engineering, 2000, 33(6): 409-421.
[28] CO TMELLEC S, LEBRUN D,ZKU C. Characterization of diffraction patterns directly from inline holograms with the fractional Fourier transform [J]. Applied Optics, 2002, 41(2): 312-319.
[29] 浦世亮. 基于激光干涉原理的颗粒场测量技术研究 [D]. 杭州: 浙江大学, 2007.
PU Shingliang. The study on particle field measurement based on laser interferometric [D]. Hangzhou: Zhejiang University, 2007.
[30] 吴学成, 浦世亮, 浦兴国, 等. 小波尺度参数对粒子场数字全息重建图像的影响 [J]. 光子学报, 2009, 38(11): 2963-2967.
WU Xuecheng, PU Shiliang, PU Xingguo, et al. Effects of scale parameter of wavelet on the numerical reconstruction of particle hologram [J]. Acta Photonica Sinica, 2009, 38(11): 2963-2967.
[31] PU S L, ALLANO D, PATTEROULAND B, et al. Particle field characterization by digital inline holography: 3D location and sizing [J]. Experiments in Fluids, 2005, 39(1): 1-9.

[1] 孙大明, 王凯, 楼平, 赵益涛, 张学军, 邱利民. 斯特林型热声发动机驱动直线发电机的工作特性[J]. J4, 2013, 47(8): 1457-1462.