| 计算机技术 |
|
|
|
|
| 基于SMPL模态分解与嵌入融合的多模态步态识别 |
吴越1( ),梁铮1,高巍1,杨茂达1,赵培森1,邓红霞1,常媛媛2,*( ) |
1. 太原理工大学 计算机科学与技术学院(大数据学院),山西 太原 030024 2. 太原理工大学 体育与健康工程学院,山西 太原 030024 |
|
| Multi-modal gait recognition based on SMPL model decomposition and embedding fusion |
Yue WU1( ),Zheng LIANG1,Wei GAO1,Maoda YANG1,Peisen ZHAO1,Hongxia DENG1,Yuanyuan CHANG2,*( ) |
1. College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China 2. School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
吴越,梁铮,高巍,杨茂达,赵培森,邓红霞,常媛媛. 基于SMPL模态分解与嵌入融合的多模态步态识别[J]. 浙江大学学报(工学版), 2026, 60(1): 52-60.
Yue WU,Zheng LIANG,Wei GAO,Maoda YANG,Peisen ZHAO,Hongxia DENG,Yuanyuan CHANG. Multi-modal gait recognition based on SMPL model decomposition and embedding fusion. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 52-60.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.005
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I1/52
|
| 1 |
MAHMOUD M, KASEM M S, KANG H S A comprehensive survey of masked faces: recognition, detection, and unmasking[J]. Applied Sciences, 2024, 14 (19): 8781
doi: 10.3390/app14198781
|
| 2 |
JIA Z, HUANG C, WANG Z, et al Finger recovery transformer: toward better incomplete fingerprint identification[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 8860- 8874
doi: 10.1109/TIFS.2024.3419690
|
| 3 |
KUEHLKAMP A, BOYD A, CZAJKA A, et al. Interpretable deep learning-based forensic iris segmentation and recognition [C]// IEEE/CVF Winter Conference on Applications of Computer Vision Workshops. Waikoloa: IEEE, 2022: 359–368.
|
| 4 |
赵晓东, 刘作军, 陈玲玲, 等 下肢假肢穿戴者跑动步态识别方法[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1980- 1988 ZHAO Xiaodong, LIU Zuojun, CHEN Lingling, et al Approach of running gait recognition for lower limb amputees[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1980- 1988
|
| 5 |
CHAO H, WANG K, HE Y, et al GaitSet: cross-view gait recognition through utilizing gait as a deep set[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (7): 3467- 3478
|
| 6 |
FAN C, PENG Y, CAO C, et al. GaitPart: temporal part-based model for gait recognition [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 14213–14221.
|
| 7 |
HUANG Z, XUE D, SHEN X, et al. 3D local convolutional neural networks for gait recognition [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 14900–14909.
|
| 8 |
LIN B, ZHANG S, YU X. Gait recognition via effective global-local feature representation and local temporal aggregation [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 14628–14636.
|
| 9 |
DOU H, ZHANG P, SU W, et al. GaitGCI: generative counterfactual intervention for gait recognition [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 5578–5588.
|
| 10 |
FAN C, LIANG J, SHEN C, et al. OpenGait: revisiting gait recognition toward better practicality [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 9707–9716.
|
| 11 |
WANG M, GUO X, LIN B, et al. DyGait: exploiting dynamic representations for high-performance gait recognition [C]// IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 13378–13387.
|
| 12 |
LIAO R, YU S, AN W, et al A model-based gait recognition method with body pose and human prior knowledge[J]. Pattern Recognition, 2020, 98: 107069
doi: 10.1016/j.patcog.2019.107069
|
| 13 |
TEEPE T, KHAN A, GILG J, et al. Gaitgraph: graph convolutional network for skeleton-based gait recognition [C]// IEEE International Conference on Image Processing. Anchorage: IEEE, 2021: 2314–2318.
|
| 14 |
FU Y, MENG S, HOU S, et al. GPGait: generalized pose-based gait recognition [C]// 2023 IEEE/CVF International Conference on Computer Vision. Los Alamitos: IEEE Computer Soc, 2023: 19538–19547.
|
| 15 |
ZHANG C, CHEN X P, HAN G Q, et al Spatial transformer network on skeleton-based gait recognition[J]. Expert Systems, 2023, 40 (6): e13244
doi: 10.1111/exsy.13244
|
| 16 |
SUN Y, FENG X, MA L, et al. TriGait: aligning and fusing skeleton and silhouette gait data via a tri-branch network [C]// IEEE International Joint Conference on Biometrics. Ljubljana: IEEE, 2023: 1–9.
|
| 17 |
ZOU S, XIONG J, FAN C, et al. A multi-stage adaptive feature fusion neural network for multimodal gait recognition [C]// IEEE International Joint Conference on Biometrics. Ljubljana: IEEE, 2023: 1–10.
|
| 18 |
ZHU H, ZHENG W, ZHENG Z, et al. GaitRef: gait recognition with refined sequential skeletons [C]// 2023 IEEE International Joint Conference on Biometrics. Ljubljana: IEEE, 2023: 1–10.
|
| 19 |
ZHENG W, ZHU H, ZHENG Z, et al GaitSTR: gait recognition with sequential two-stream refinement[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2024, 6 (4): 528- 538
doi: 10.1109/TBIOM.2024.3390626
|
| 20 |
ZHENG J, LIU X, LIU W, et al. Gait recognition in the wild with dense 3D representations and a benchmark [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 20196–20205.
|
| 21 |
DONG Y, YU C, HA R, et al. HybridGait: a benchmark for spatial-temporal cloth-changing gait recognition with hybrid explorations [C]// AAAI Conference on Artificial Intelligence. Palo Alto: Assoc Advancement Artificial Intelligence, 2024: 1600–1608.
|
| 22 |
LOPER M, MAHMOOD N, ROMERO J, et al SMPL: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 2015, 34 (6): 248
|
| 23 |
YU S, TAN D, TAN T. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition [C]// International Conference on Pattern Recognition. Hong Kong: IEEE, 2006: 441–444.
|
| 24 |
TAKEMURA N, MAKIHARA Y, MURAMATSU D, et al Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition[J]. IPSJ Transactions on Computer Vision and Applications, 2018, 10 (1): 4
doi: 10.1186/s41074-018-0039-6
|
| 25 |
ZHU Z, GUO X, YANG T, et al. Gait recognition in the wild: a benchmark [C]// 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 14789–14799.
|
| 26 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [C]// International Conference on Learning Representations. Toulon: [s. n. ], 2017.
|
| 27 |
LI J, ZHANG Y, SHAN H, et al. Gaitcotr: improved spatial-temporal representation for gait recognition with a hybrid convolution-transformer framework [C]// 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island: IEEE, 2023: 1–5.
|
| 28 |
SONG Y F, ZHANG Z, SHAN C, et al. Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition [C]// ACM International Conference on Multimedia. Seattle: ACM, 2020: 1625–1633.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|