Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (9): 1864-1871    DOI: 10.3785/j.issn.1008-973X.2025.09.010
计算机技术     
基于几何拓扑的汽车视角识别及三维线框模型重建
吴奇1(),王博1,*(),王华伟1,胡溧1,李宝军2
1. 武汉科技大学 汽车与交通工程学院,湖北 武汉 430081
2. 大连理工大学 汽车工程学院,辽宁 大连 116024
Vehicle view recognition and 3D wireframe model reconstruction based on geometric topology
Qi WU1(),Bo WANG1,*(),Huawei WANG1,Li HU1,Baojun LI2
1. School of Automotive and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2. School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China
 全文: PDF(2613 KB)   HTML
摘要:

面对复杂设计任务,传统手绘草图和三维重建方法常常须投入巨大的时间、人力和财力. 为了克服这些挑战,提出基于几何拓扑的汽车视角识别及三维线框模型重建方法. 建立包含少量汽车三维线框模型的模型库,通过对车身高度、宽度、轴距等参数进行多尺度缩放,扩充至3528个模型. 车身关键点标注采用基于Matlab开发的交互系统,利用标注的关键点与三维线框模型库中不同视角的投影点集进行匹配,对汽车角度进行识别. 根据关键点在三维模型中的关联关系,利用带约束的最小二乘法,完成复杂三维线框模型的重建. 通过更新模型库中模型以及关键点位置即可实现对任意车型三维线框模型的重建. 对SUV和MPV两种不同车型的三维线框模型进行重建,实验结果表明,重建结果耗时约33~44 s,关键点误差小于32 mm,该方法在不同视角下的重建时间和重建误差显著低于传统的重建方法,具有更高的重建效率和精度.

关键词: 汽车造型几何拓扑关键点汽车角度识别三维线框重建    
Abstract:

In the face of complex design tasks, traditional hand-drawn sketches and 3D reconstruction methods often require a huge investment of time, labor, and financial resources. In order to overcome these challenges, a geometric topology-based viewpoint recognition and 3D wireframe model reconstruction method for automobiles was proposed. A model library containing a small number of 3D wireframe models of automobiles was established, which was expanded to 3528 models by multi-scale scaling of body height, width, wheelbase and other parameters. The key point labeling of the car body adopted an interactive system developed based on Matlab, which utilized the labeled key points to match with the projection point sets of different viewpoints in the 3D wireframe model library to identify the angles of the car. The reconstruction of the complex 3D wireframe model was accomplished by using the least squares method with constraints based on the topological relationships of the key points in the 3D model. The reconstruction of 3D wireframe model of arbitrary vehicle types could be realized by updating the model in the model library and the positions of key points. The experimental results showed that the reconstruction time was about 33~44 seconds, and the error of key points was controlled within 32 mm. The reconstruction time and reconstruction error of this method were significantly lower those of the traditional reconstruction method in different viewpoints, demonstrating higher reconstruction efficiency and accuracy.

Key words: car modeling    geometric topology    key point    vehicle angle recognition    3D wireframe reconstruction
收稿日期: 2023-09-04 出版日期: 2025-08-25
CLC:  TP 393  
基金资助: 国家自然科学基金资助项目(52375260,51905389).
通讯作者: 王博     E-mail: 2258151731@qq.com;wangbo66@wust.edu.cn
作者简介: 吴奇(2001—),男,硕士生,从事计算机图形学研究. orcid.org/0009-0008-3040-6737. E-mail:2258151731@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴奇
王博
王华伟
胡溧
李宝军

引用本文:

吴奇,王博,王华伟,胡溧,李宝军. 基于几何拓扑的汽车视角识别及三维线框模型重建[J]. 浙江大学学报(工学版), 2025, 59(9): 1864-1871.

Qi WU,Bo WANG,Huawei WANG,Li HU,Baojun LI. Vehicle view recognition and 3D wireframe model reconstruction based on geometric topology. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1864-1871.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.010        https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1864

图 1  三维线框模版
图 2  三维线框模型库
扩充次数扩充方法初始数目最终数目
1z轴方向缩放1484
2y轴方向缩放84588
3x轴方向缩放5883 528
表 1  模型库扩充的相关数据
图 3  关键点位置示意图
图 4  关键点标注界面
图 5  车体坐标系示意图
图 6  不同旋转角度下的3D形状展示
图 7  不同视角下的关键点标注结果
图 8  重建三维线框模型
图 9  不同视角下的重建结果
图 10  重建线框模型在图像中的绘制结果
图 11  本研究方法与文献[24]方法的重建误差对比
图 12  模型库中不同SUV模型展示
图 13  重建线框模型在图像中的绘制结果
图 14  SUV车型关键点重建误差
图 15  模型库中不同MPV模型展示
图 16  重建线框模型在图像中的绘制结果
图 17  MPV车型关键点重建误差
1 周超, 潘铎 现代汽车造型分析与设计[J]. 时代汽车, 2022, (4): 124- 125
ZHOU Chao, PAN Duo Analysis and design of modern automobile styling[J]. Auto Time, 2022, (4): 124- 125
doi: 10.3969/j.issn.1672-9668.2022.04.053
2 苏佳幸, 李伽熙, 李睿思, 等 基于文本数据的汽车造型需求分析[J]. 时代汽车, 2023, (21): 150- 153
SU Jiaxing, LI Jiaxi, LI Ruisi, et al Analysis of the automotive styling demand based on text data[J]. Auto Time, 2023, (21): 150- 153
doi: 10.3969/j.issn.1672-9668.2023.21.050
3 WANG H, YANG J, LIANG W, et al Deep single-view 3D object reconstruction with visual hull embedding[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 8941- 8948
doi: 10.1609/aaai.v33i01.33018941
4 LIU F, LIU X. 2D GANs meet unsupervised single-view 3D reconstruction [C]// European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 497–514.
5 WALLACE B, HARIHARAN B. Few-shot generalization for single-image 3D reconstruction via priors [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3817−3826.
6 KATO H, HARADA T. Learning view priors for single-view 3D reconstruction [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9770−9779.
7 WU J, ZHANG C, ZHANG X, et al. Learning shape priors for single-view 3D completion and reconstruction [C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 673–691.
8 XU Q, WANG W, CEYLAN D, et al. DISN: Deep implicit surface network for high-quality single-view 3d reconstru- ction[J]. Advances in neural information processing syste- ms , 2019, 32.
9 REDDY N D, VO M, NARASIMHAN S G. CarFusion: combining point tracking and part detection for dynamic 3D reconstruction of vehicles [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1906–1915.
10 TATARCHENKO M, RICHTER S R, RANFTL R, et al. What do single-view 3D reconstruction networks learn? [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3400-3409.
11 HOANG D C, LILIENTHAL A J, STOYANOV T Object-RPE: dense 3D reconstruction and pose estimation with convolutional neural networks[J]. Robotics and Autonomous Systems, 2020, 133: 103632
doi: 10.1016/j.robot.2020.103632
12 WANG B, WU Q, WANG H, et al 3D surface reconstruction of car body based on any single view[J]. IEEE Access, 2024, 12: 74903- 74914
doi: 10.1109/ACCESS.2024.3404635
13 HOU X, GOU B, CHEN D, et al A method to assist designers in optimizing the exterior styling of vehicles based on key features[J]. Expert Systems with Applications, 2024, 254: 124485
doi: 10.1016/j.eswa.2024.124485
14 ROBINSON D E. Fashion theory and product design [M]// Fashion marketing. London: Routledge, 2024: 433–450.
15 LU C, KONIUSZ P Detect any keypoints: an efficient light-weight few-shot keypoint detector[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38 (4): 3882- 3890
doi: 10.1609/aaai.v38i4.28180
16 CAI G, CHEN B M, LEE T H. Coordinate systems and transformations [M]// Unmanned rotorcraft systems. London: Springer London, 2011: 23–34.
17 GOSZTOLAI A, GÜNEL S, LOBATO-RÍOS V, et al LiftPose3D, a deep learning-based approach for transforming two-dimensional to three-dimensional poses in laboratory animals[J]. Nature Methods, 2021, 18 (8): 975- 981
doi: 10.1038/s41592-021-01226-z
18 GAO C, SUN C, SHAN L, et al. Rotate3D: representing relations as rotations in three-dimensional space for knowledge graph embedding [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. [s. l. ]: ACM, 2020: 385−394.
19 HUANG Y, ZHENG W, ZHANG Y, et al. Tri-perspective view for vision-based 3D semantic occupancy prediction [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2023: 9223–9232.
20 NGUYEN T X, BUI H V Study of the influence of lateral forces and velocity on the lateral dynamics of automobile[J]. EUREKA: Physics and Engineering, 2024, (2): 70- 78
21 ZHAO R, WANG H, ZHANG C, et al. PointNeuron: 3D neuron reconstruction via geometry and topology learning of point clouds [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2023: 5776–5786.
22 WANG Y, WU Y, LI D, et al Millimeter-wave radar and vision fusion-based semantic simultaneous localization and mapping[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23 (11): 3977- 3981
doi: 10.1109/LAWP.2024.3389678
23 DI NUCCI D, SIMONI A, TOMEI M, et al. KRONC: keypoint-based robust camera optimization for 3D car reconstruction [C]// European Conference on Computer Vision. Cham: Springer, 2025: 140−157.
24 王博, 江祖毅 基于单视图稀疏点的汽车三维模型重建[J]. 武汉科技大学学报, 2023, 46 (4): 296- 302
WANG Bo, JIANG Zuyi Reconstructing 3D automobile model from sparse points on a single view[J]. Journal of Wuhan University of Science and Technology, 2023, 46 (4): 296- 302
doi: 10.3969/j.issn.1674-3644.2023.04.008
[1] 孙雪菲,张瑞峰,关欣,李锵. 强化先验骨架结构的轻量型高效人体姿态估计[J]. 浙江大学学报(工学版), 2024, 58(1): 50-60.
[2] 郭梦丽, 达飞鹏, 邓星, 盖绍彦. 基于关键点和局部特征的三维人脸识别[J]. 浙江大学学报(工学版), 2017, 51(3): 584-589.
[3] 周昌 郑雅羽 周凡 陈耀武. 基于局部图像描述的目标跟踪方法[J]. J4, 2008, 42(7): 1179-1183.