计算机技术 |
|
|
|
|
基于几何拓扑的汽车视角识别及三维线框模型重建 |
吴奇1( ),王博1,*( ),王华伟1,胡溧1,李宝军2 |
1. 武汉科技大学 汽车与交通工程学院,湖北 武汉 430081 2. 大连理工大学 汽车工程学院,辽宁 大连 116024 |
|
Vehicle view recognition and 3D wireframe model reconstruction based on geometric topology |
Qi WU1( ),Bo WANG1,*( ),Huawei WANG1,Li HU1,Baojun LI2 |
1. School of Automotive and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430081, China 2. School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
吴奇,王博,王华伟,胡溧,李宝军. 基于几何拓扑的汽车视角识别及三维线框模型重建[J]. 浙江大学学报(工学版), 2025, 59(9): 1864-1871.
Qi WU,Bo WANG,Huawei WANG,Li HU,Baojun LI. Vehicle view recognition and 3D wireframe model reconstruction based on geometric topology. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1864-1871.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.010
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1864
|
1 |
周超, 潘铎 现代汽车造型分析与设计[J]. 时代汽车, 2022, (4): 124- 125 ZHOU Chao, PAN Duo Analysis and design of modern automobile styling[J]. Auto Time, 2022, (4): 124- 125
doi: 10.3969/j.issn.1672-9668.2022.04.053
|
2 |
苏佳幸, 李伽熙, 李睿思, 等 基于文本数据的汽车造型需求分析[J]. 时代汽车, 2023, (21): 150- 153 SU Jiaxing, LI Jiaxi, LI Ruisi, et al Analysis of the automotive styling demand based on text data[J]. Auto Time, 2023, (21): 150- 153
doi: 10.3969/j.issn.1672-9668.2023.21.050
|
3 |
WANG H, YANG J, LIANG W, et al Deep single-view 3D object reconstruction with visual hull embedding[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 8941- 8948
doi: 10.1609/aaai.v33i01.33018941
|
4 |
LIU F, LIU X. 2D GANs meet unsupervised single-view 3D reconstruction [C]// European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 497–514.
|
5 |
WALLACE B, HARIHARAN B. Few-shot generalization for single-image 3D reconstruction via priors [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3817−3826.
|
6 |
KATO H, HARADA T. Learning view priors for single-view 3D reconstruction [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9770−9779.
|
7 |
WU J, ZHANG C, ZHANG X, et al. Learning shape priors for single-view 3D completion and reconstruction [C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 673–691.
|
8 |
XU Q, WANG W, CEYLAN D, et al. DISN: Deep implicit surface network for high-quality single-view 3d reconstru- ction[J]. Advances in neural information processing syste- ms , 2019, 32.
|
9 |
REDDY N D, VO M, NARASIMHAN S G. CarFusion: combining point tracking and part detection for dynamic 3D reconstruction of vehicles [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1906–1915.
|
10 |
TATARCHENKO M, RICHTER S R, RANFTL R, et al. What do single-view 3D reconstruction networks learn? [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3400-3409.
|
11 |
HOANG D C, LILIENTHAL A J, STOYANOV T Object-RPE: dense 3D reconstruction and pose estimation with convolutional neural networks[J]. Robotics and Autonomous Systems, 2020, 133: 103632
doi: 10.1016/j.robot.2020.103632
|
12 |
WANG B, WU Q, WANG H, et al 3D surface reconstruction of car body based on any single view[J]. IEEE Access, 2024, 12: 74903- 74914
doi: 10.1109/ACCESS.2024.3404635
|
13 |
HOU X, GOU B, CHEN D, et al A method to assist designers in optimizing the exterior styling of vehicles based on key features[J]. Expert Systems with Applications, 2024, 254: 124485
doi: 10.1016/j.eswa.2024.124485
|
14 |
ROBINSON D E. Fashion theory and product design [M]// Fashion marketing. London: Routledge, 2024: 433–450.
|
15 |
LU C, KONIUSZ P Detect any keypoints: an efficient light-weight few-shot keypoint detector[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38 (4): 3882- 3890
doi: 10.1609/aaai.v38i4.28180
|
16 |
CAI G, CHEN B M, LEE T H. Coordinate systems and transformations [M]// Unmanned rotorcraft systems. London: Springer London, 2011: 23–34.
|
17 |
GOSZTOLAI A, GÜNEL S, LOBATO-RÍOS V, et al LiftPose3D, a deep learning-based approach for transforming two-dimensional to three-dimensional poses in laboratory animals[J]. Nature Methods, 2021, 18 (8): 975- 981
doi: 10.1038/s41592-021-01226-z
|
18 |
GAO C, SUN C, SHAN L, et al. Rotate3D: representing relations as rotations in three-dimensional space for knowledge graph embedding [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. [s. l. ]: ACM, 2020: 385−394.
|
19 |
HUANG Y, ZHENG W, ZHANG Y, et al. Tri-perspective view for vision-based 3D semantic occupancy prediction [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2023: 9223–9232.
|
20 |
NGUYEN T X, BUI H V Study of the influence of lateral forces and velocity on the lateral dynamics of automobile[J]. EUREKA: Physics and Engineering, 2024, (2): 70- 78
|
21 |
ZHAO R, WANG H, ZHANG C, et al. PointNeuron: 3D neuron reconstruction via geometry and topology learning of point clouds [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2023: 5776–5786.
|
22 |
WANG Y, WU Y, LI D, et al Millimeter-wave radar and vision fusion-based semantic simultaneous localization and mapping[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23 (11): 3977- 3981
doi: 10.1109/LAWP.2024.3389678
|
23 |
DI NUCCI D, SIMONI A, TOMEI M, et al. KRONC: keypoint-based robust camera optimization for 3D car reconstruction [C]// European Conference on Computer Vision. Cham: Springer, 2025: 140−157.
|
24 |
王博, 江祖毅 基于单视图稀疏点的汽车三维模型重建[J]. 武汉科技大学学报, 2023, 46 (4): 296- 302 WANG Bo, JIANG Zuyi Reconstructing 3D automobile model from sparse points on a single view[J]. Journal of Wuhan University of Science and Technology, 2023, 46 (4): 296- 302
doi: 10.3969/j.issn.1674-3644.2023.04.008
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|