Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1755-1766    DOI: 10.3785/j.issn.1008-973X.2025.08.023
土木工程、交通工程     
考虑信号控制的公交轨迹控制与站点充电协同方法
杨城城1,2(),高坤2,金盛1,3,*(),白聪聪1,戎栋磊1,4,高熙1,沈辛夷1
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 查尔姆斯理工大学 建筑与土木工程学系,瑞典 哥德堡 41296
3. 浙江大学 中原研究院,河南 郑州 450000
4. 香港理工大学 工业及系统工程学系,香港 999077
Collaborative method of bus trajectory control and station charging considering signal control
Chengcheng YANG1,2(),Kun GAO2,Sheng JIN1,3,*(),Congcong BAI1,Donglei RONG1,4,Xi GAO1,Xinyi SHEN1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
3. Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
4. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
 全文: PDF(2942 KB)   HTML
摘要:

针对电动公交运行过程中存在的里程焦虑问题,提出考虑干线信号协调的网联电动公交(CEBs)轨迹控制与站点充电协同方法. 针对道路中的常规车辆(RVs)和CEBs,利用混合整数线性规划方法,构建考虑RVs运行效率与CEBs的交叉口不停车约束条件的干线信号协调控制模型;考虑乘客需求、车头时距保持规则、串车现象、交叉口不停车约束、速度边界及充电时长边界,基于规则方法构建轨迹控制与站点充电协同优化模型,使CEBs在保持良好运行效率与秩序的同时,能够灵活调整停站时长以进行静态无线充电. 基于实际场景的仿真实验结果表明,模型可以在几乎不影响CEBs总体运行效率的情况下,增加85%的静态无线充电时长. 通过适用性与敏感性分析,为模型的实际应用提供了建议.

关键词: 交通工程公交调度混合整数线性规划网联电动公交干线信号协调静态无线充电    
Abstract:

A collaborative method of trajectory control and station charging for connected electric buses (CEBs) considering arterial signal coordination was proposed to address the mileage anxiety problem existing in the operation process of electric buses. For regular vehicles (RVs) and CEBs running on the road, the mixed integer linear programming method was used to construct an arterial signal coordination control model considering the operation efficiency of RVs and the constraints of non-stop at intersections for CEBs. On this basis, a rule-based approach was used to construct a collaborative optimization model of bus trajectory control and station charging by considering the passenger demand, the bus headway maintenance, bus bunching, the non-stop constraints at intersections, the speed boundary and the charging duration boundary of CEBs. This model can enable CEBs to flexibly adjust the stop time for wireless static charging while maintaining good operational efficiency and order. Simulation experimental results based on real-world scenarios showed that the proposed model could increase the static wireless charging duration of CEBs by 85% without significantly affecting the overall operational efficiency of CEBs. In addition, through the applicability and sensitivity analysis, some insights wer given for the practical application of the model.

Key words: traffic engineering    bus scheduling    mixed integer linear programming    connected electric bus    arterial signal coordination    static wireless charging
收稿日期: 2024-11-23 出版日期: 2025-07-28
:  U 491  
基金资助: 国家自然科学基金资助项目(72361137006);国家留学基金管理委员会资助项目;浙江省“尖兵”“领雁”研发攻关计划资助项目(2022C01042).
通讯作者: 金盛     E-mail: 12112120@zju.edu.cn;jinsheng@zju.edu.cn
作者简介: 杨城城(1995—),男,博士生,从事交通信号控制与公交调度的研究. orcid.org/0000-0001-8228-8607. E-mail:12112120@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨城城
高坤
金盛
白聪聪
戎栋磊
高熙
沈辛夷

引用本文:

杨城城,高坤,金盛,白聪聪,戎栋磊,高熙,沈辛夷. 考虑信号控制的公交轨迹控制与站点充电协同方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1755-1766.

Chengcheng YANG,Kun GAO,Sheng JIN,Congcong BAI,Donglei RONG,Xi GAO,Xinyi SHEN. Collaborative method of bus trajectory control and station charging considering signal control. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1755-1766.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.023        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1755

图 1  RVs运行时空图及相位相序模式
图 2  CEBs到达区间与绿灯区间之间的关系
图 3  各运行路段第1阶段中CEBs的轨迹控制逻辑
图 4  各运行路段第3阶段中CEBs的轨迹控制逻辑
图 5  仿真实验环境
图 6  STC和ST策略下的CEBs运行轨迹
图 7  STC和ST策略下CEBs充电时长与行程时间
图 8  不同CEBs流量下的运行指标变化
场景ts/s
12345678910
ST16.08.05.05.06.06.05.05.08.06.0
ST29.014.09.012.014.014.012.09.014.09.0
ST312.020.013.019.022.022.019.013.020.012.0
ST415.025.016.025.030.030.025.016.025.015.0
表 1  不同需求场景下的CEBs停站时间
图 9  不同乘客需求场景与充电需求系数下充电时间增加量的变化
图 10  不同充电需求系数下的CEBs平均充电时长
图 11  不同充电需求系数下的CEBs行程时间
图 12  不同充电需求系数下的CEBs运行指标变化
图 13  当充电需求系数分别为0.2、0.4、0.6、0.8时的CEBs速度分布
1 LI P, JIANG M, ZHANG Y, et al Cooperative optimization of bus service and charging schedules for a fast-charging battery electric bus network[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (5): 5362- 5375
doi: 10.1109/TITS.2023.3243105
2 董红召, 王桢, 张楠, 等 电动公交车电池荷电状态的Seq2Seq预测方法[J]. 浙江大学学报: 工学版, 2023, 57 (10): 2051- 2059
DONG Hongzhao, WANG Zhen, ZHANG Nan, et al Seq2Seq prediction method of state of charge of electric bus battery[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (10): 2051- 2059
3 熊杰, 甘凯伦, 李同飞, 等 电动公交车队规模与充电桩配置协同优化[J]. 交通运输工程与信息学报, 2024, 22 (1): 95- 110
XIONG Jie, GAN Kailun, LI Tongfei, et al Collaborative optimization of electric bus fleet size and charger deployment[J]. Journal of Transportation Engineering and Information, 2024, 22 (1): 95- 110
4 李斌, 黄起彬 面向资源约束的电动公交车充电调度策略[J]. 交通运输工程与信息学报, 2024, 22 (1): 79- 94
LI Bin, HUANG Qibin Resource constraint-oriented charging scheduling strategy for electric buses[J]. Journal of Transportation Engineering and Information, 2024, 22 (1): 79- 94
5 叶鑫宇, 刘昊翔, 龙建成 考虑充电需求的电动公交车运营优化模型与算法[J]. 交通运输工程与信息学报, 2023, 21 (1): 135- 151
YE Xinyu, LIU Haoxiang, LONG Jiancheng Optimization model and algorithm for electric bus operation considering charging demand[J]. Journal of Transportation Engineering and Information, 2023, 21 (1): 135- 151
6 别一鸣, 郝明杰, 王琳虹 专用道条件下电动公交线路静态无线充电设施布局优化[J]. 中国公路学报, 2023, 36 (1): 202- 213
BIE Yiming, HAO Mingjie, WANG Linhong Layout optimization of static wireless charging facilities for electric bus routes with dedicated bus lanes[J]. China Journal of Highway and Transport, 2023, 36 (1): 202- 213
doi: 10.3969/j.issn.1001-7372.2023.01.016
7 金盛, 李博林, 薛炜 智能网联车借用公交专用道的轨迹与信号协同优化[J]. 吉林大学学报: 工学版, 2025, 55 (2): 566- 576
JIN Sheng, LI Bolin, XUE Wei Collaborative optimization for signals and trajectories of connected automated vehicles on dedicated bus lanes[J]. Journal of Jilin University: Engineering and Technology Edition, 2025, 55 (2): 566- 576
8 曹宁博, 陈家辉, 赵利英 智能网联车和人驾车辆混合交通流排队长度估计模型[J]. 浙江大学学报: 工学版, 2024, 58 (9): 1935- 1944
CAO Ningbo, CHEN Jiahui, ZHAO Liying Queue length estimation model for mixed traffic flow of intelligent connected vehicles and human-driven vehicles[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (9): 1935- 1944
9 赵琥, 冯树民, 廖嘉雯, 等 车路协同环境下重叠线路公交车速诱导策略[J]. 中国公路学报, 2021, 34 (7): 42- 53
ZHAO Hu, FENG Shumin, LIAO Jiawen, et al Speed guidance strategy for buses run on overlapping route segments under cooperative vehicle infrastructure[J]. China Journal of Highway and Transport, 2021, 34 (7): 42- 53
doi: 10.3969/j.issn.1001-7372.2021.07.004
10 任晗啸, 罗禹贡, 关书睿, 等 面向进出站强制换道过程的智能网联公交车两车协同换道策略[J]. 清华大学学报: 自然科学版, 2024, 64 (8): 1456- 1468
REN Hanxiao, LUO Yugong, GUAN Shurui, et al Two-vehicle cooperative lane change strategy for intelligent and connected buses in the mandatory lane change process of entry and exit[J]. Journal of Tsinghua University: Science and Technology, 2024, 64 (8): 1456- 1468
11 朱文韬, 钱国敏, 马东方, 等 考虑路口上游停靠站影响的公交延误模型[J]. 浙江大学学报: 工学版, 2020, 54 (4): 796- 803,815
ZHU Wentao, QIAN Guomin, MA Dongfang, et al Bus delay model considering influence of stop at upstream of intersection[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 796- 803,815
12 徐亮, 于海洋, 金盛, 等 兼顾社会车辆多路径协调的干线公交优先信号协调方法[J]. 中国公路学报, 2023, 36 (10): 281- 291
XU Liang, YU Haiyang JIN Sheng, et al An arterial bus signal priority strategy considering multi-path coordination of social vehicles[J]. China Journal of Highway and Transport, 2023, 36 (10): 281- 291
13 YANG C, JIN S, YAO W, et al Collaborative optimization of intersection signals and speed guidance for buses run on overlapping route segments under connected environment[J]. Computer-Aided Civil and Infrastructure Engineering, 2024, 39 (21): 3289- 3316
doi: 10.1111/mice.13289
14 ESTRADA M, MENSIÓN J, AYMAMÍ J M, et al Bus control strategies in corridors with signalized intersections[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 500- 520
doi: 10.1016/j.trc.2016.08.013
15 熊杰, 赖可凡, 李同飞, 等 考虑非线性充电的纯电动公交充电计划优化[J]. 华南理工大学学报: 自然科学版, 2024, 52 (9): 115- 130
XIONG Jie, LAI Kefan, LI Tongfei, et al Charging schedule optimization of battery electric bus considering nonlinear charging profile[J]. Journal of South China University of Technology: Natural Science Edition, 2024, 52 (9): 115- 130
16 YANG C, LOU W, YAO J, et al On charging scheduling optimization for a wirelessly charged electric bus system[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19 (6): 1814- 1826
doi: 10.1109/TITS.2017.2740329
17 AYAD A, EL-TAWEEL N, FARAG H Optimal design of battery swapping-based electrified public bus transit systems[J]. IEEE Transactions on Transportation Electrification, 2021, 7 (4): 2390- 2401
doi: 10.1109/TTE.2021.3083106
18 CHEN Z, LIU W, YIN Y Deployment of stationary and dynamic charging infrastructure for electric vehicles along traffic corridors[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 185- 206
doi: 10.1016/j.trc.2017.01.021
19 JI J, BIE Y, ZENG Z, et al Trip energy consumption estimation for electric buses[J]. Communications in Transportation Research, 2022, 2: 100069
doi: 10.1016/j.commtr.2022.100069
20 LITTLE J D C, KELSON M D, GARTNER N H MAXBAND: a program for setting signals on arteries and triangular networks[J]. Transportation Research Record Journal of the Transportation Research Board, 1981, 795: 40- 46
21 GARTNER N H, ASSMAN S F, LASAGA F, et al A multi-band approach to arterial traffic signal optimization[J]. Transportation Research Part B: Methodological, 1991, 25 (1): 55- 74
doi: 10.1016/0191-2615(91)90013-9
[1] 何艳,孙轶琳,赵志健,疏阳. 融合碳激励潜变量的低碳出行方式选择模型[J]. 浙江大学学报(工学版), 2024, 58(8): 1628-1635.
[2] 宋浪,王健,杨璐,安实. 平行流交叉口车道控制与信号配时组合优化[J]. 浙江大学学报(工学版), 2024, 58(8): 1647-1658.
[3] 刘鹏,路庆昌,秦汉,崔欣. 道路网络多阶段抗灾能力优化模型构建与应用[J]. 浙江大学学报(工学版), 2024, 58(1): 96-108.
[4] 卢凯,尹帅帅,江书妍,周志洁,李青. 考虑交织路段掉头车流的邻近交叉口信号协调控制[J]. 浙江大学学报(工学版), 2023, 57(8): 1618-1628.
[5] 潘义勇,管星宇. 基于分位数回归的随机优化速度跟驰模型[J]. 浙江大学学报(工学版), 2022, 56(8): 1553-1559.
[6] 侯越,韩成艳,郑鑫,邓志远. 基于时空融合图卷积的交通流数据修复方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1394-1403.
[7] 余佳洁,季彦婕,卜卿,郑岳标. 考虑断点成本的长干线分段绿波控制方法[J]. 浙江大学学报(工学版), 2022, 56(4): 640-648.
[8] 曹宁博,赵利英. 路段环境自动驾驶汽车通行权决策方法[J]. 浙江大学学报(工学版), 2022, 56(1): 118-127.
[9] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[10] 卢凯,田鑫,林观荣,邓兴栋. 交叉口信号相位设置与配时同步优化模型[J]. 浙江大学学报(工学版), 2020, 54(5): 921-930.
[11] 曾佳棋,王殿海. 双向干线协调控制的改进数解算法[J]. 浙江大学学报(工学版), 2020, 54(12): 2386-2394.
[12] 张思佳,贾顺平,毛保华,麻存瑞,张桐. 乘客出行距离分布对轨道线网内公交竞争力的影响[J]. 浙江大学学报(工学版), 2019, 53(2): 292-298.
[13] 龚越, 罗小芹, 王殿海, 杨少辉. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版), 2018, 52(3): 453-460.
[14] 徐程, 曲昭伟, 王殿海, 金盛. 混合自行车交通流速度分布模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1331-1338.
[15] 刘美岐, 沈莉潇, 金盛. 考虑右转信号控制的共用车道通行能力模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1347-1354.