Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1727-1737    DOI: 10.3785/j.issn.1008-973X.2025.08.020
计算机技术、控制工程、通信技术     
用于低轨卫星扩频通信系统的高动态快捕算法
徐兆斌1,2,3(),谢志强1,袁新博1,金小军1,2,3,金仲和1,2,3
1. 浙江大学 微小卫星研究中心,浙江 杭州 310027
2. 浣江实验室,浙江 诸暨 311899
3. 浙江省微纳卫星研究重点实验室,浙江 杭州 310027
High dynamic fast acquisition algorithm for low orbit satellite spread spectrum communication system
Zhaobin XU1,2,3(),Zhiqiang XIE1,Xinbo YUAN1,Xiaojun JIN1,2,3,Zhonghe JIN1,2,3
1. Micro-satellite Research Center, Zhejiang University, Hangzhou 310027, China
2. Huanjiang Laboratory, Zhuji 311899, China
3. Key Laboratory of Micro-satellite Research of Zhejiang Province, Hangzhou 310027, China
 全文: PDF(3623 KB)   HTML
摘要:

针对低轨卫星扩频通信系统信噪比较低且多普勒频偏较大的问题,提出改进的FFT-IFFT捕获算法. 利用扫频区间的边带信息估计捕获区间,在高灵敏度高动态条件下减少FFT次数并缩短捕获时间. 结合数字自动增益控制(AGC)辅助的捕获机制降低误捕概率,提升了算法的可靠性. 理论分析与实验表明,改进算法比传统算法更有优势,在满足检测概率大于99%、最小载噪比为34.66 dB、最小信噪比为16 dB的情况下,极限灵敏度可达?130 dBm,总多普勒频偏捕获范围可达140 kHz,捕获时间低至0.8 s,满足实际应用的需求,已应用于浙江大学自主研制的某大规模低轨卫星星座中.

关键词: 低轨卫星捕获算法多普勒频偏高灵敏度高动态    
Abstract:

An improved FFT-IFFT acquisition algorithm was proposed aiming at the problems of low SNR and large Doppler frequency offset in low orbit satellite spread spectrum communication system. The sideband information of the swept frequency interval was used to estimate the acquisition interval, which can reduce the number of FFT and shorten the acquisition time under high sensitivity and high dynamic conditions. The probability of false acquisition was reduced and the reliability of the algorithm was improved combined with the acquisition mechanism assisted by digital automatic gain control (AGC). Theoretical analysis and experiments showed that the improved algorithm was better than traditional algorithms. The maximum sensitivity can reach ?130 dBm, the total Doppler frequency offset acquisition range can reach 140 kHz, and the acquisition time is as low as 0.8 s when the detection probability is greater than 99%, the minimum CNR is 34.66 dB and the minimum SNR is 16 dB, which meets the needs of practical application. The improved algorithm had been applied in a large-scale low orbit satellite constellation independently developed by Zhejiang University.

Key words: low orbit satellite    acquisition algorithm    Doppler frequency offset    high sensitivity    high dynamic
收稿日期: 2024-07-10 出版日期: 2025-07-28
:  TN 927  
基金资助: 国家自然科学基金资助项目(U21A20443,62073289).
作者简介: 徐兆斌(1984—),男,副教授,从事微纳卫星总体设计、星群通信及组网的研究. orcid.org/0000-0003-3059-8947. E-mail:zjuxzb@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
徐兆斌
谢志强
袁新博
金小军
金仲和

引用本文:

徐兆斌,谢志强,袁新博,金小军,金仲和. 用于低轨卫星扩频通信系统的高动态快捕算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1727-1737.

Zhaobin XU,Zhiqiang XIE,Xinbo YUAN,Xiaojun JIN,Zhonghe JIN. High dynamic fast acquisition algorithm for low orbit satellite spread spectrum communication system. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1727-1737.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.020        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1727

图 1  扩频通信系统
图 2  FFT-IFFT捕获算法的原理
图 3  分组并行FFT-IFFT捕获算法
图 4  捕获算法的区间分布
图 5  边带区间作差曲线
图 6  捕获概率密度函数
图 7  数字AGC增益曲线
图 8  算法对比的示意图
图 9  FFT-IFFT组的计算次数曲线
图 10  扫频次数的对比曲线
图 11  莱斯概率密度曲线
图 12  捕获概率与信噪比曲线
参数数值参数数值
${n_{\mathrm{B}}}$2${\text{DO}}{{\text{P}}_{\text{R}}}/{\mathrm{kHz}}$$ \pm 70$
${\text{p}}{{\text{n}}_{\text{r}}}/{\mathrm{MHz}}$$6.138$$T/{\mathrm{s}}$$ < 0.8$
${n_{\mathrm{F}}}$$1\;024$${P_{{\mathrm{FA}}}}$$ < {10^{ - 4}}$
$V$$512$${P_{{\mathrm{FD}}}}$$ < {10^{ - 2}}$
${\text{FF}}{{\text{T}}_{{\text{NUM}}}}$$11$$\delta ({f_{\mathrm{e}}})/{\mathrm{dB}}$$ < 2$
$(0.5{T_{\mathrm{h}}}\sigma _{\mathrm{n}}^{-2})/{\mathrm{dB}}$$13.9$${\text{SNR}}/{\mathrm{dB}}$$ > 16$
${\text{FF}}{{\text{T}}_{\text{R}}}/{\mathrm{Hz}}$$1\;360$${P_{\min }}/{\mathrm{dBm}}$$ > - 136.34$
${f_{\mathrm{D}}}/{\mathrm{(kbit·s^{-1})}}$$1.0\sim 2.0$$H/{\mathrm{km}}$490
${f_{\mathrm{B}}}$S-Band
表 1  扩频通信系统的参数
图 13  捕获峰值与频偏码偏的关系
图 14  边带区间捕获
图 15  不同信噪比下的捕获结果
图 16  边带区间的作差结果
图 17  作差结果的线性误差
图 18  硬件仿真捕获流程的波形
图 19  射频前端硬件电路
图 20  硬件测试平台的结构
图 21  实际的扩频通信平台
图 22  算法的误捕情况对比
图 23  不同入口功率下的解扩波形
算法${\text{DO}}{{\text{P}}_{\text{R}}}/{\mathrm{kHz}}$$T/{\mathrm{s}}$${f_{\mathrm{D}}}/{\mathrm{Hz}}$fmin/dB
传统算法$ \pm 70$$ < 1.2$$1.0\sim 2.0$?128
改进算法$ \pm 70$$ < 0.8$$1.0\sim 2.0$?130
表 2  捕获算法的性能指标对比
P/dBme/10?6
传统算法改进算法
$ - 130$$32$$4.74$
$ - 129$$ 55.6 $$6.09 $
$ - 128$$3.10$$2.67$
$ - 127$$3.68 $$2.41 $
$ - 126$$1.09$$1.86$
表 3  捕获算法的误码率结果对比
1 吴树范, 王伟, 温济帆, 等 低轨互联网星座发展研究[J]. 北京航空航天大学学报, 2024, 50 (1): 1- 11
WU Shufan, WANG Wei, WEN Jifan, et al Review on development of LEO Internet constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (1): 1- 11
2 姜春晓, 王佳蔚 高动态卫星DSSS信号Turbo迭代捕获算法[J]. 通信学报, 2021, 42 (8): 15- 24
JIANG Chunxiao, WANG Jiawei Turbo iterative acquisition algorithm for satellite high-mobility DSSS signal[J]. Journal on Communications, 2021, 42 (8): 15- 24
3 王康, 梁晟溟, 董启甲, 等 一种低轨卫星高灵敏度辅助定位服务系统[J]. 宇航学报, 2022, 43 (4): 445- 453
WANG Kang, LIANG Shengming, DONG Qijia, et al A high sensitivity auxiliary positioning service system using LEO satellites[J]. Journal of Astronautics, 2022, 43 (4): 445- 453
4 柳春. 基于PMF-FFT的高动态导航信号捕获设计与实现[D]. 成都: 电子科技大学, 2014.
LIU Chun. Design and implementation of high dynamic navigation signal acquisition based on PMF-FFT algorithm [D]. Chengdu: University of Electronic Science and Technology, 2014.
5 韩志凤, 刘建业, 李荣冰, 等 基于差分相关积分的北斗弱信号快速捕获方法[J]. 中国惯性技术学报, 2016, 24 (6): 815- 820
HAN Zhifeng, LIU Jianye, LI Rongbing, et al Fast acquisition of Beidou weak signal based on differential correlation[J]. Journal of Chinese Inertial Technology, 2016, 24 (6): 815- 820
6 郭晓旭, 徐兆斌, 成恒飞, 等 用于星间通信的高灵敏度快捕算法[J]. 哈尔滨工业大学学报, 2023, 55 (8): 43- 50
GUO Xiaoxu, XU Zhaobin, CHENG Hengfei, et al High sensitivity fast acquisition algorithm for inter-satellite communication[J]. Journal of Harbin Institute of Technology, 2023, 55 (8): 43- 50
doi: 10.11918/202208112
7 张朝杰, 金小军, 杨伟君, 等 高灵敏度微小卫星可变带宽接收机设计[J]. 浙江大学学报: 工学版, 2011, 45 (4): 660- 664
ZHANG Chaojie, JIN Xiaojun, YANG Weijun, et al Design of variable loop bandwidth high sensitivity micro-satellite receiver[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (4): 660- 664
8 CUI S, WANG D, HOLTKAMP B, et al. A multi-frequency acquisition algorithm for a GNSS software receiver [C]//IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 1082-1085.
9 陈延涛, 董彬虹, 李昊, 等 一种高动态低信噪比环境下基于多样本点串行快速傅里叶变换的信号捕获方法[J]. 电子与信息学报, 2021, 43 (6): 1691- 1697
CHEN Yantao, DONG Binhong, LI Hao, et al A signal acquisition method based on multi-sample serial fast Fourier transform in high dynamic and low SNR environment[J]. Journal of Electronics and Information Technology, 2021, 43 (6): 1691- 1697
doi: 10.11999/JEIT200149
10 孙振辉. 高动态低信噪比条件下DSSS信号接收机捕获技术的研究[D]. 西安: 西安电子科技大学, 2020.
SUN Zhenhui. Research on acquisition process of DSSS receiver under high dynamic and low SNR circumstances [D]. Xi'an: Xidian University, 2020.
11 冯永新, 任锦君, 刘芳 双块零扩展截断相关的长码信号快速捕获算法[J]. 兵工学报, 2019, 40 (3): 539- 547
FENG Yongxin, REN Jinjun, LIU Fang A fast acquisition algorithm with DBZP truncation correlation for the long code signal[J]. Acta Armamentarii, 2019, 40 (3): 539- 547
12 朱超逸. 高可靠小型测控应答机的研究与改进[D]. 杭州: 浙江大学, 2015.
ZHU Chaoyi. A research and development of a high reliability micro TT and C Transponder [D]. Hangzhou: Zhejiang University, 2015.
13 HE Y, SHI X, WANG Y, et al Intelligent search strategy for Doppler frequency based on fuzzy logic in DSSS signal acquisition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59 (4): 4709- 4720
doi: 10.1109/TAES.2023.3234456
14 莫杭斌. 微纳卫星星间链路可靠通联设计与实现[D]. 杭州: 浙江大学, 2020.
MO Hangbin. Design and implementation of reliable communication in inter-satellite link of micro-nano satellites [D]. Hangzhou: Zhejiang University, 2020.
15 熊竹林, 安建平 一种低复杂度的低信噪比非相干直扩信号捕获算法[J]. 电子学报, 2016, 44 (4): 753- 760
XIONG Zhulin, AN Jianping A low complexity acquisition algorithm for DSSS signal with low SNR and non-coherent data modulation[J]. Acta Electronica Sinica, 2016, 44 (4): 753- 760
16 鲁郁. 北斗/GPS双模软件接收机原理与实现技术[M]. 北京: 电子工业出版社, 2016.
17 JIN G, ZHUANG Y, CUI M, et al A stable and two-step settling digital controlled AGC loop for GNSS receiver[J]. IEICE Electronics Express, 2014, 11 (19): 738- 744
18 ZHANG S, WAN G, WANG S, et al. A fast DSSS signal acquisition method with low computing load based on approximate kernel FFT/IFFT [C]// Asia-Pacific Conference on Communications Technology and Computer Science. Shenyang: IEEE, 2023: 319-323.
19 韩航程, 刘井龙, 梁丹丹, 等 基于FFT的高数据率低信噪比下的长码直捕算法[J]. 北京理工大学学报, 2016, 36 (9): 976- 982
HAN Hangcheng, LIU Jinglong, LIANG Dandan, et al Long code direct acquisition algorithm of DSSS signals based on FFT in high rate and low SNR condition[J]. Journal of Beijing Institute of Technology, 2016, 36 (9): 976- 982
[1] 郭小辉,洪炜强,郑国庆,王景溢,唐国鹏,杨金阳,卓超强,许耀华,赵雨农,张红伟. 分级倾斜微圆柱结构的高灵敏度柔性触觉传感器[J]. 浙江大学学报(工学版), 2022, 56(6): 1079-1087, 1126.
[2] 蒋昊,徐海松. 基于直方图与图像分块融合的阶调映射算法[J]. 浙江大学学报(工学版), 2022, 56(11): 2224-2231.
[3] 余鑫,金小军,莫仕明,张伟,徐兆斌,金仲和. 基于北斗B3频点的低轨卫星实时定轨性能评估[J]. 浙江大学学报(工学版), 2020, 54(3): 589-596.
[4] 陈阔, 冯华君, 徐之海, 李奇, 陈跃庭. 细节保持的快速曝光融合[J]. 浙江大学学报(工学版), 2015, 49(6): 1048-1054.
[5] 江燊煜,陈阔,徐之海,冯华君,李奇,陈跃庭. 基于曝光适度评价的多曝光图像融合方法[J]. 浙江大学学报(工学版), 2015, 49(3): 470-475.
[6] 尹喜珍, 马成炎, 叶甜春, 肖时茂, 于云丰. 高灵敏度GNSS接收机频率合成器设计[J]. J4, 2013, 47(1): 70-76.