Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1583-1589    DOI: 10.3785/j.issn.1008-973X.2025.08.004
机械工程、能源工程     
叠片导磁棒式集成化速度传感器的建模与实验
丁川1,2(),朱子帅1,2,夏宁1,2,高鹏辉1,2,裴升祥1,2
1. 浙江工业大学 机械工程学院,浙江 杭州 310023
2. 浙江工业大学 特种装备制造与先进加工技术教育部重点实验室,浙江 杭州 310023
Modeling and experiment of integrated speed sensor based on laminated magnetic rod
Chuan DING1,2(),Zishuai ZHU1,2,Ning XIA1,2,Penghui GAO1,2,Shengxiang PEI1,2
1. School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(3322 KB)   HTML
摘要:

为了提高液压缸与速度传感器之间的集成度,提出基于磁感应式设计理念的速度传感器. 该传感器用液压缸活塞运动改变缸体不同位置的磁通量,用霍尔元件感应磁通量的变化,实现位移和速度的测量. 参考行业内叠压硅钢片的方式,通过将导磁棒离散化再叠片的方式进行涡流抑制来改善传感器的动态性能,通过公式推导和Maxwell三维仿真模型验证叠片厚度对叠片式导磁棒涡流损耗的影响. 使用叠片式导磁棒的新式传感器与标准传感器,开展对比标定实验. 结果表明,当输入正弦流量信号时,使用叠片式导磁棒的新式传感器的复现频率达到5 Hz;当输入阶跃流量信号时,响应滞后时间降至0.30 s. 结果验证了优化方案的可行性.

关键词: 液压缸速度传感器Maxwell仿真叠片式导磁棒标定实验    
Abstract:

A speed sensor based on magnetic induction principles was proposed to improve the integration of hydraulic cylinders with speed sensor. Piston motion was employed to modulate magnetic flux distribution along the cylinder body, with Hall-effect sensors detecting flux variation to realize the measurement of displacement and speed. Eddy currents were mitigated via discretized and laminated magnetic rods to enhance dynamic response inspired by industrial laminated silicon steel stacking techniques. Theoretical analysis and Maxwell 3D simulations verified the influence of lamination thickness on eddy current losses within these rods. Comparative calibration experiments between the novel sensor based on laminated magnetic rod and conventional sensors revealed that the proposed design attained a tracking bandwidth of 5 Hz under sinusoidal flow excitation, while step-flow tests yielded a reduced response latency of 0.30 s. Results verified the feasibility of the optimized sensor configuration.

Key words: hydraulic cylinder    speed sensor    Maxwell simulation    laminated magnetic rod    calibration experiment
收稿日期: 2024-07-11 出版日期: 2025-07-28
:  TP 212  
基金资助: 国家自然科学基金资助项目(51805480);浙江省自然科学基金资助项目(ZCLMS25E0502).
作者简介: 丁川(1986—),男,副教授,从事高性能液压元件和高速、超高压液压系统的研究. orcid.org/ 0000-0002-1034-2261. E-mail:chuanding@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
丁川
朱子帅
夏宁
高鹏辉
裴升祥

引用本文:

丁川,朱子帅,夏宁,高鹏辉,裴升祥. 叠片导磁棒式集成化速度传感器的建模与实验[J]. 浙江大学学报(工学版), 2025, 59(8): 1583-1589.

Chuan DING,Zishuai ZHU,Ning XIA,Penghui GAO,Shengxiang PEI. Modeling and experiment of integrated speed sensor based on laminated magnetic rod. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1583-1589.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.004        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1583

图 1  集成于动态缸中的速度传感器机械结构
图 2  活塞移动时磁感线分布的理论示意图
图 3  叠片式导磁棒截面
图 4  叠片结构的单片示意图
图 5  线性霍尔元件处的磁感应强度趋势
图 6  速度传感器的Maxwell三维仿真模型
参数数值参数数值
缸体外径/mm130线圈线径/mm0.3
缸体内径/mm92线圈电阻/Ω12
永磁体材料NdFe30导磁棒直径/mm20
永磁体直径/mm40导磁棒长度/mm275
永磁体厚度/mm10活塞行程/mm200
线圈匝数900
表 1  速度传感器仿真模型的物理参数设置
图 7  不同加工条件下导磁棒对阶跃信号响应的影响
图 8  不同频率正弦信号下叠片厚度对线圈感应电动势的影响
图 9  不同叠片厚度导磁棒的频率响应伯德图
图 10  叠片导磁棒式速度传感器的测量标定实验台
仪器参数
比例伺服换向阀HD-
4WRPEH6C4B12L
7 MPa阀压差下公称体积流量为40 L/min,阶跃响应时间(0~100%)<10 ms,响应频率(控制电压UE±100%)为60 Hz
标准速度传感器
SD-150
测量量程为0~0.1 m/s,精度为1%,输出电压为500 mV
标准位移传感器
WY-150
测量量程为0~250 mm,精度为1%,输出电压为0~5 V
数据采集卡研华
USB-4716
16路模拟输入,采样速率为1.5×105 s?1
泵源额定压力为7 MPa,额定体积流量为300 L/min
溢流阀
HD-DB10-1-10B/315
最大压力为31 MPa,最大体积流量为650 L/min
表 2  测量标定实验台实验仪器的性能参数
图 11  叠片式导磁棒稳态测量特性的实验结果比较
图 12  叠片式导磁棒阶跃响应测量特性标定的实验结果示意图
图 13  标准正弦测量特性标定实验的结果示意图
图 14  叠片导磁棒式速度传感器的频响特性
1 王松, 张天宏, 王建锋, 等 基于涡轮流量计的动态流量测量方法研究[J]. 测控技术, 2012, 31 (11): 24- 27
WANG Song, ZHANG Tianhong, WANG Jianfeng, et al Study of dynamic flow rate measurement based on turbine flow meter[J]. Measurement and Control Technology, 2012, 31 (11): 24- 27
doi: 10.3969/j.issn.1000-8829.2012.11.006
2 严加斌, 朱峰, 李军, 等 高速动车组速度传感器的电磁干扰测试与分析[J]. 电子测量与仪器学报, 2015, (3): 433- 438
YAN Jiabin, ZHU Feng, LI Jun, et al Electromagnetic interference measurement and analysis of high-speed electric multiple units speed sensor[J]. Journal of Electronic Measurement and Instrument, 2015, (3): 433- 438
3 张柏杰 霍尔速度传感器在线检测设备的研制[J]. 设备管理与维修, 2021, 18: 133- 134
ZHANG Bojie Development of on-line detection equipment for Hall velocity sensor[J]. Plant Maintenance Engineering, 2021, 18: 133- 134
4 LAM K, CHEN Z, NI Y, et al A magnetorheological damper capable of force and displacement sensing[J]. Sensors and Actuators A: Physical, 2009, 158 (1): 51- 59
5 MOCIRAN B, GLIGA M Optimization of an inductive displacement transducer[J]. Sensors, 2023, 23 (19): 8152
doi: 10.3390/s23198152
6 ANA D, STJEPAN F, BOJAN T Methodology for eddy current losses calculation in linear variable differential transformers (LVDTs)[J]. Sensors, 2023, 23 (4): 1760
doi: 10.3390/s23041760
7 MEHRAN M, PAVEL R, VACLAV G, et al An axial flux eddy current sensor with perpendicular coils for speed measurement[J]. Sensors and Actuators A: Physical, 2024, 365: 114917
doi: 10.1016/j.sna.2023.114917
8 JIANG G, CHEN S, LI Z, et al Cylindrical-cam modulation instantaneous angular speed sensor for reciprocating-rotary machine[J]. Mechanical Systems and Signal Processing, 2023, 205: 110860
doi: 10.1016/j.ymssp.2023.110860
9 MEHRAN M, PAVEL R Rotating speed measurement using an optimized eddy current sensor[J]. Measurement, 2023, 221: 113547
doi: 10.1016/j.measurement.2023.113547
10 WANG S, LIANG Q, LI C, et al Design of guided wave magnetostrictive patch transducer with vertical static bias magnetic field for pipe inspection[J]. Sensors and Actuators A: Physical, 2024, 376: 115611
doi: 10.1016/j.sna.2024.115611
11 WANG Q, LI M, GUO P, et al Model and design of magnetostrictive flexible sensor for gesture recognition based on curvature and magnetism fusion[J]. Measurement, 2024, 236: 115151
doi: 10.1016/j.measurement.2024.115151
12 CHEONG K, FURUICHI N, DOIHARA R, et al A comparison between a Coriolis meter and a combination method of a volumetric positive-displacement flowmeter and a densitometer in measuring liquid fuel mass flow at low flow rates[J]. Measurement: Sensors, 2021, 18: 100321
doi: 10.1016/j.measen.2021.100321
13 樊烨男. 基于磁感应原理的液压缸外置式位移传感技术研究[D]. 太原: 太原理工大学, 2022.
FAN Yenan. Research on external displacement sensing technology of hydraulic cylinder based on magnetic induction principle [D]. Taiyuan: Taiyuan University of Technology, 2022.
14 樊烨男, 高飞, 廉自生 液压缸用外置式磁感应位移传感器设计[J]. 机电工程, 2022, 39 (6): 775- 782
FAN Yenan, GAO Fei, LIAN Zisheng Design of external magnetic induction displacement sensor for hydraulic cylinder[J]. Journal of Mechanical and Electrical Engineering, 2022, 39 (6): 775- 782
doi: 10.3969/j.issn.1001-4551.2022.06.009
15 SU C, LIU X, YOU Y, et al Highly sensitive magnetostrictive sensor with well-sealed and sensitivity tunability[J]. Optical Fiber Technology, 2024, 84: 103737
doi: 10.1016/j.yofte.2024.103737
16 DING C, CHEN H, ZHANG C, et al. An investigation on the dynamic characteristics of a two-dimensional piston flowmeter [J]. Advances in Mechanical Engineering, 2022, 14(4): 16878132221095996.
17 丁川, 陈豪奇, 王熙, 等 二维活塞式动态流量计研究[J]. 农业机械学报, 2022, 53 (4): 450- 458
DING Chuan, CHEN Haoqi, WANG Xi, et al Investigation on two-dimensional piston dynamic flowmeter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (4): 450- 458
doi: 10.6041/j.issn.1000-1298.2022.04.047
18 丁川, 朱海鑫, 朱宽宽, 等 单向高频正弦流量信号标定系统的建模与试验[J]. 浙江大学学报: 工学版, 2023, 57 (12): 2375- 2380
DING Chuan, ZHU Haixin, ZHU Kuankuan, et al Modeling and testing of unidirectional high-frequency sinusoidal flow signal calibration system[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (12): 2375- 2380
19 孟彬, 杨冠政, 徐豪, 等 插装式2D电液比例流量阀的特性研究[J]. 机械工程学报, 2022, 58 (20): 421- 437
MENG Bin, YANG Guanzheng, XU Hao, et al Study on characteristics of 2D cartridge electro-hydraulic proportional flow rate valve[J]. Journal of Mechanical Engineering, 2022, 58 (20): 421- 437
doi: 10.3901/JME.2022.20.421
20 丁川, 夏宁, 周维华, 等. 集成变磁通式速度传感器的液压缸: CN115163608B [P]. 2023-06-23.
DING Chuan, XIA Ning, ZHOU Weihua, et al. Hydraulic cylinder integrated with variable flux speed sensor: CN115163608B [P]. 2023-06-23.
21 乌克塞维克. 电机[M]. 余龙海, 刘光军, 廖育武, 译. 北京: 机械工业出版社, 2015: 54-56.
22 唐胜睦 测量不确定度评定中灵敏系数的计算[J]. 计量与测试技术, 2013, 40 (1): 66- 67
TANG Shengmu Sensitivity coefficient calculation about the evaluation of uncertainty in measurement[J]. Metrology and Measurement Technique, 2013, 40 (1): 66- 67
doi: 10.3969/j.issn.1004-6941.2013.01.034
[1] 魏齐,陶建峰,孙浩,张宇磊,刘成良. 含平衡阀阀控缸的非线性模型预测轨迹跟踪[J]. 浙江大学学报(工学版), 2025, 59(8): 1565-1573.
[2] 孙炜,刘恒,陶建峰,孙浩,刘成良. 基于IndRNN-1DLCNN的负载口独立控制阀控缸系统故障诊断[J]. 浙江大学学报(工学版), 2023, 57(10): 2028-2041.
[3] 林勇刚,许建强,刘宏伟,李伟. 基于数字液压缸组的波浪能装置压力匹配[J]. 浙江大学学报(工学版), 2019, 53(10): 1892-1897.
[4] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[5] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[6] 王婷, 陈斌, 姚文熙, 吕征宇. 异步电机无速度传感器控制的Holtz型磁链观测器性能分析[J]. 浙江大学学报(工学版), 2014, 48(9): 1690-1695.
[7] 杨清, 陈岭, 陈根才. 基于单加速度传感器的行走距离估计[J]. J4, 2010, 44(9): 1681-1686.
[8] 刘强 冯培恩 潘双夏. 基于干扰观测器的非对称液压缸鲁棒运动控制[J]. J4, 2006, 40(4): 594-598.