计算机技术 |
|
|
|
|
基于多核数据合成的离线小数据驱动的进化算法 |
李二超( ),刘昀 |
兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050 |
|
Offline small data-driven evolutionary algorithm based on multi-kernel data synthesis |
Erchao LI( ),Yun LIU |
College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China |
1 |
JIN Y, WANG H, CHUGH T, et al Data-driven evolutionary optimization: an overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23 (3): 442- 458
doi: 10.1109/TEVC.2018.2869001
|
2 |
CHEN R, HE C, JIN Y, et al Model-based evolutionary algorithms: a short survey[J]. Complex and Intelligent Systems, 2018, 4 (4): 283- 292
doi: 10.1007/s40747-018-0080-1
|
3 |
HE C, TIAN Y, WANG H, et al A repository of real-world datasets for data-driven evolutionary multiobjective optimization[J]. Complex and Intelligent Systems, 2020, 6 (1): 189- 197
doi: 10.1007/s40747-019-00126-2
|
4 |
WANG H, JIN Y, JANSEN J O Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system[J]. IEEE Transactions on Evolutionary Computation, 2016, 20 (6): 939- 952
doi: 10.1109/TEVC.2016.2555315
|
5 |
GUO D, CHAI T, DING J, et al. Small data driven evolutionary multi-objective optimization of fused magnesium furnaces [C]// IEEE Symposium Series on Computational Intelligence . Athens: IEEE, 2016: 1-8.
|
6 |
黄鹏飞. 离线数据驱动的进化优化研究[D]. 西安: 西安电子科技大学, 2021: 15-18, 46-47. HUANG Pengfei. A study on offline data-driven evolutionary optimization [D]. Xi’an: Xidian University, 2021: 15-18, 46-47.
|
7 |
HUANG P, WANG H, MA W. Stochastic ranking for offline data-driven evolutionary optimization using radial basis function networks with multiple kernels [C]// IEEE Symposium Series on Computational Intelligence . Xiamen: IEEE, 2019: 2050-2057.
|
8 |
CHENG R, JIN Y, NARUKAWA K, et al A multiobjective evolutionary algorithm using gaussian process-based inverse modeling[J]. IEEE Transactions on Evolutionary Computation, 2015, 19 (6): 838- 856
doi: 10.1109/TEVC.2015.2395073
|
9 |
梁正平, 黄锡均, 李燊钿, 等 基于剪枝堆栈泛化的离线数据驱动进化优化[J]. 自动化学报, 2023, 49 (6): 1306- 1325 LIANG Zhengping, HUANG Xijun, LI Shentian, et al Offline data driven evolutionary optimization based on pruning stacked generalization[J]. Acta Automatica Sinica, 2023, 49 (6): 1306- 1325
|
10 |
ZHOU Z, ONG Y S, NGUYEN M H, et al. A study on polynomial regression and gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm [C]// IEEE Congress on Evolutionary Computation . Edinburgh: IEEE, 2005: 2832-2839.
|
11 |
HUANG P, WANG H, JIN Y Offline data-driven evolutionary optimization based on tri-training[J]. Swarm and Evolutionary Computation, 2021, 60: 100800
doi: 10.1016/j.swevo.2020.100800
|
12 |
CHUGH T, CHAKRABORTI N, SINDHYA K, et al A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem[J]. Materials and Manufacturing Processes, 2017, 32 (10): 1172- 1178
doi: 10.1080/10426914.2016.1269923
|
13 |
LI J, ZHAN Z, ZHANG J Evolutionary computation for expensive optimization: a survey[J]. Machine Intelligence Research, 2022, 19 (1): 3- 23
doi: 10.1007/s11633-022-1317-4
|
14 |
CHUGH T, JIN Y, MIETTINEN K, et al A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 22 (1): 129- 142
|
15 |
LIM D, ONG Y S, JIN Y, et al. A study on metamodeling techniques, ensembles, and multi-surrogates in evolutionary computation [C]// Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation . London: ACM, 2007: 1288-1295.
|
16 |
MEY A, LOOG M Improved generalization in semi-supervised learning: a survey of theoretical results[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (4): 4747- 4767
doi: 10.1109/TPAMI.2022.3198175
|
17 |
GÖNEN M, ALPAYDIN E Multiple kernel learning algorithms[J]. The Journal of Machine Learning Research, 2011, 12 (7): 2211- 2268
|
18 |
MA X, LI X, ZHANG Q, et al A survey on cooperative co-evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2019, 23 (3): 421- 441
doi: 10.1109/TEVC.2018.2868770
|
19 |
WANG H, JIN Y, SUN C, et al Offline data-driven evolutionary optimization using selective surrogate ensembles[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (2): 203- 216
|
20 |
ZHOU Z, LI M Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 (11): 1529- 1541
doi: 10.1109/TKDE.2005.186
|
21 |
GOSAIN A, SACHDEVA K Materialized view selection for query performance enhancement using stochastic ranking based cuckoo search algorithm[J]. International Journal of Reliability, Quality and Safety Engineering, 2020, 27 (3): 2050008
doi: 10.1142/S0218539320500084
|
22 |
GONG Y, ZHONG Y, HUANG H. Offline data-driven optimization at scale: a cooperative coevolutionary approach [EB/OL]. (2023-12-04)[2024-01-30]. https://doi.org/10.1109/TEVC.2023.3338693.
|
23 |
HUANG H, GONG Y Contrastive learning: an alternative surrogate for offline data-driven evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2023, 27 (2): 370- 384
doi: 10.1109/TEVC.2022.3170638
|
24 |
WANG R, ZHU F, ZHANG X, et al Training with scaled logits to alleviate class-level over-fitting in few-shot learning[J]. Neurocomputing, 2023, 522: 142- 151
doi: 10.1016/j.neucom.2022.12.011
|
25 |
ROHLOFF C T, KOHLI N, CHUNG S The impact of functional form complexity on model overfitting for nonlinear mixed-effects models[J]. Multivariate Behavioral Research, 2023, 58 (4): 723- 742
doi: 10.1080/00273171.2022.2119360
|
26 |
RASTEGAR R, HARIRI A A step forward in studying the compact genetic algorithm[J]. Evolutionary Computation, 2006, 14 (3): 277- 289
doi: 10.1162/evco.2006.14.3.277
|
27 |
王嵘冰, 徐红艳, 李波, 等 BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28 (4): 31- 35 WANG Rongbing, XU Hongyan, LI Bo, et al Research on method of determining hidden layer nodes in BP neural network[J]. Computer Technology and Development, 2018, 28 (4): 31- 35
doi: 10.3969/j.issn.1673-629X.2018.04.007
|
28 |
MAO Y, LIU C, XIAO D, et al Study of the magnetic properties of haematite based on spectroscopy and the IPSO-ELM neural network[J]. Journal of Sensors, 2018, 2018 (1): 1- 9
|
29 |
MIN M, CHEN X, LEI Y, et al A novel kernel-based extreme learning machine with incremental hidden layer nodes[J]. IFAC PapersOnLine, 2020, 53 (2): 11836- 11841
doi: 10.1016/j.ifacol.2020.12.695
|
30 |
TAO L, CAO T, WANG Q, et al Distribution adaptation and classification framework based on multiple kernel learning for motor imagery BCI illiteracy[J]. Sensors, 2022, 22 (17): 6572
doi: 10.3390/s22176572
|
31 |
PRICE S R, ANDERSEN D T, HAVENS T C, et al Kernel matrix-based heuristic multiple kernel learning[J]. Mathematics, 2022, 10 (12): 2026
doi: 10.3390/math10122026
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|