Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1524-1532    DOI: 10.3785/j.issn.1008-973X.2024.07.022
信息工程、电子工程     
2.4 GHz GaAs HBT高线性度功率放大器设计
张松(),傅海鹏*()
天津大学 微电子学院,天津 300072
Design of 2.4 GHz GaAs HBT high linearity power amplifier
Song ZHANG(),Haipeng FU*()
School of Microelectronics, Tianjin University, Tianjin 300072, China
 全文: PDF(2677 KB)   HTML
摘要:

为了满足Wi-Fi 6射频前端对高线性度、高发射功率的需求,基于GaAs HBT工艺设计工作于2.4~2.5 GHz的功率放大器. 利用有源自适应偏置、二次谐波阻抗控制和多级放大器失真互补实现所设计放大器的高线性输出功率,通过键合金线的高品质因子寄生电感降低输出匹配的插损,并将直流与射频功率检测集成. 测试结果表明,所设计放大器的小信号增益为30.6~30.7 dB,输入输出回波损耗均小于?10 dB,输出1 dB压缩功率为29.2 dBm,对应功率附加效率为26.4%. 在802.11ax标准、MCS7调制策略、40 MHz带宽的测试信号下,当误差矢量幅度小于?30 dB时,所设计放大器的最大输出功率为24.1 dBm. 在MCS9调制策略下,当误差矢量幅度小于?35 dB时,所设计放大器的最大输出功率为23.6 dBm;在MCS11调制策略下,当误差矢量幅度小于?40 dB时,所设计放大器的最大输出功率为22.4 dBm,对应最大功率附加效率为10.2%.

关键词: 功率放大器砷化镓高线性度误差矢量幅度二次谐波阻抗    
Abstract:

A power amplifier operating at 2.4-2.5 GHz was designed based on GaAs HBT technology to meet the requirement of high linearity and high transmission power for the Wi-Fi 6 RF front-end module. The amplifier achieved high linear output power using adaptive bias, second harmonic impedance control, and multistage amplifier distortion complementing. Output matching network insertion loss was reduced by taking advantage of bonding-wire inductance with high-quality factor, and DC and RF power detector was integrated. Test results showed that the gain of the amplifier was 30.6-30.7 dB, the input and output return loss were less than ?10 dB, the output 1 dB compression power was 29.2 dBm, and the corresponding power added efficiency was 26.4%. Under the test signal of 802.11ax standard, MCS7 modulation strategy, and 40 MHz bandwidth, the maximum output power of the amplifier was 24.1 dBm when the error vector magnitude was less than ?30 dB. Under the MCS9 modulation strategy, the maximum output power of the amplifier was 23.6 dBm when the error vector magnitude was less than ?35 dB. Under the MCS11 modulation strategy, the maximum output power of the amplifier was 22.4 dBm when the error vector magnitude was less than ?40 dB, and the corresponding maximum power added efficiency was 10.2%.

Key words: power amplifier    gallium arsenide    high linearity    error vector magnitude    second harmonic impedance
收稿日期: 2023-06-14 出版日期: 2024-07-01
CLC:  TN 43  
基金资助: 国家自然科学基金资助项目(62074110);国家重点研发计划资助项目(2018YFB2202500).
通讯作者: 傅海鹏     E-mail: frankz_song@163.com;hpfu@tju.edu.cn
作者简介: 张松( 1999—),男,硕士生,从事射频功率放大器研究. orcid.org/0009-0004-9631-1707. E-mail:frankz_song@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张松
傅海鹏

引用本文:

张松,傅海鹏. 2.4 GHz GaAs HBT高线性度功率放大器设计[J]. 浙江大学学报(工学版), 2024, 58(7): 1524-1532.

Song ZHANG,Haipeng FU. Design of 2.4 GHz GaAs HBT high linearity power amplifier. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1524-1532.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.022        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1524

图 1  有源自适应偏置电路
图 2  二次谐波控制对功率放大器线性度的影响
图 3  LC谐振电路中电感品质因子对调幅至调相的影响
图 4  多级放大器中调幅至调幅、调幅至调相失真的前后级互补
图 5  输出匹配3D示意图与仿真结果
图 6  功率放大器原理图
图 7  功率放大器显微镜照片
图 8  散射参数仿真和测试结果
图 9  功率增益和功率附加效率随输出功率变化曲线
图 10  802.11ax调制信号测试结果
图 11  MCS11调制下输出功率为22.4 dBm时的星座图和频谱图
图 12  射频和直流功率检测随输出功率变化曲线
工艺f/GHzVcc/VG/dB调试方式EVM/ dBPout/dBm
GaAs HBT[1]5.000~5.5005.031.1~31.6MCS93222.1
GaAs HBT[9]2.400~2.5003.323.1~23.264QAM3019.8
0.13um CMOS[14]5.150~5.8503.614.3~15.0256QAM3517.8
GaAs HBT[17]5.150-6.4255.033.0MCS114018.0~20.0
GaAs HBT(本研究)2.400~2.5005.030.6~30.7MCS114021.7~22.4
表 1  高线性度功率放大器性能比较
1 YANG H, YOU H, QIAO S A fully integrated GaAs HBT power amplifier with enhanced efficiency for 5-GHz WLAN applications[J]. IEICE Electronics Express, 2022, 19 (12): 20220157
doi: 10.1587/elex.19.20220157
2 LIU B, YI X, YANG K, et al A carrier aggregation transmitter front end for 5-GHz WLAN 802.11ax application in 40-nm CMOS[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68 (1): 264- 276
doi: 10.1109/TMTT.2019.2939311
3 JU I, GONG Y, CRESSLER J D Highly linear high-power 802.11ac/ax WLAN SiGe HBT power amplifiers with a compact 2nd-harmonic-shorted four-way transformer and a thermally compensating dynamic bias circuit[J]. IEEE Journal of Solid-State Circuits, 2020, 55 (9): 2356- 2370
doi: 10.1109/JSSC.2020.2993720
4 REYNIER P, SERHAN A, PARAT D, et al. A High-power SOI-CMOS PA module with fan-out wafer-level packaging for 2.4 GHz Wi-Fi 6 applications [C]// 2021 IEEE Radio Frequency Integrated Circuits Symposium . Atlanta: IEEE, 2021: 59–62.
5 BEN-BASSAT A, GROSS S, LANE A, et al A fully integrated 27-dBm dual-band all-digital polar transmitter supporting 160 MHz for Wi-Fi 6 applications[J]. IEEE Journal of Solid-State Circuits, 2020, 55 (12): 3414- 3425
doi: 10.1109/JSSC.2020.3024973
6 PASSAMANI A, PONTON D, WOLTER A, et al. A 28 nm low-voltage digital power-amplifier for QAM-256 WIFI applications in 0.5 mm2 area w/ 2D digital-pre-distortion and package combiner [C]// 2018 25th IEEE International Conference on Electronics, Circuits and Systems . Bordeaux: IEEE, 2018: 21–24.
7 NOH Y S, PARK C S PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit[J]. IEEE Journal of Solid-State Circuits, 2002, 37 (9): 1096- 1099
8 HUANG C C, CHEN W T, CHEN K Y High efficiency linear power amplifier for IEEE 802.11g WLAN applications[J]. IEEE Microwave and Wireless Components Letters, 2006, 16 (9): 508- 510
doi: 10.1109/LMWC.2006.880702
9 金婕, 艾宝丽, 史佳, 等 用于IEEE 802.11 b/g/n WLAN的高线性度功率放大器[J]. 半导体技术, 2015, 40 (4): 255- 260
JIN Jie, AI Baoli, SHI Jia, et al High linear power amplifier for IEEE 802.11 b/g/n WLAN applications[J]. Semiconductor Technology, 2015, 40 (4): 255- 260
10 SPIRITO M, DEVREEDE L C N, NANVER L K, et al Power amplifier PAE and ruggedness optimization by second-harmonic control[J]. IEEE Journal of Solid-State Circuits, 2003, 38 (9): 1575- 1583
doi: 10.1109/JSSC.2003.815918
11 XIE H, CHENG Y J, DING Y R, et al A C-band high-efficiency power amplifier MMIC with second-harmonic control in 0.25 μm GaN HEMT technology[J]. IEEE Microwave and Wireless Components Letters, 2021, 31 (12): 1303- 1306
doi: 10.1109/LMWC.2021.3106196
12 KIM J, HONG S K, OH J Highly efficient power amplifier based on harmonic-controlled matching network[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33 (1): 43- 46
doi: 10.1109/LMWC.2022.3196669
13 FRANÇOIS B, REYNAERT P A fully integrated transformer-coupled power detector with 5 GHz RF PA for WLAN 802.11ac in 40 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2015, 50 (5): 1237- 1250
doi: 10.1109/JSSC.2015.2399458
14 KANG S, BAEK D, HONG S A 5-GHz WLAN RF CMOS power amplifier with a parallel-cascoded configuration and an active feedback linearizer[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65 (9): 3230- 3244
doi: 10.1109/TMTT.2017.2691766
15 CHOI K, KIM M, KIM H, et al A highly linear two-stage amplifier integrated circuit using InGaP/GaAs HBT[J]. IEEE Journal of Solid-State Circuits, 2010, 45 (10): 2038- 2043
doi: 10.1109/JSSC.2010.2061612
16 LI W T, WANG S M, LIN G C. A WLAN RF CMOS power amplifier with power detector, high harmonic suppression, and temperature compensation [C]// 2015 European Microwave Conference . Paris: IEEE, 2015: 1287–1290.
17 LI J J, ZHANG Z, ZHANG G A 5.15–6.425 GHz stagger-tuning neutralized power amplifier using a continuous-mode harmonically tuned network[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33 (2): 173- 176
doi: 10.1109/LMWC.2022.3168567
18 GUO T, LU Z, TANG K, et al A floating-body transistor-based power amplifier for sub-6-GHz 5G applications in SOI CMOS 130-nm process[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69 (10): 4088- 4092
19 李皓天. 应用于功放小型化的金丝键合线模型研究[D]. 成都: 电子科技大学, 2021.
LI Haotian. Research of gold bonding wire model for power amplifier miniaturization [D]. Chengdu: University of Electronic Science and Technology of China, 2021.
20 ADLERSTEIN M G Thermal stability of emitter ballasted HBT’s[J]. IEEE Transactions on Electron Devices, 1998, 45 (8): 1653- 1655
doi: 10.1109/16.704359
21 LIU W, KHATIBZADEH A, SWEDER J, et al The use of base ballasting to prevent the collapse of current gain in AlGaAs/GaAs heterojunction bipolar transistors[J]. IEEE Transactions on Electron Devices, 1996, 43 (2): 245- 251
doi: 10.1109/16.481724
[1] 王东 吴为麟. 数字化电力电压测量信号放大系统研究[J]. J4, 2005, 39(8): 1160-1163.