Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1498-1504    DOI: 10.3785/j.issn.1008-973X.2024.07.019
机械工程、能源工程     
具有板式基底结构的界面蒸发系统性能模拟
李思彤(),葛洪宇,康培森,穆林,刘晓华*()
大连理工大学 能源与动力学院,海洋能源利用与节能教育部重点实验室,辽宁 大连 116024
Numerical simulation of interfacial evaporation system performance with plate substrate structure
Sitong LI(),Hongyu GE,Peisen KANG,Lin MU,Xiaohua LIU*()
School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
 全文: PDF(1662 KB)   HTML
摘要:

针对具有板式基底结构的太阳能界面蒸发系统建立三维数学模型,利用Ansys Fluent软件求解该系统的蒸发过程,研究板缝宽度及料液质量分数对界面蒸发过程的影响. 结果表明:蒸发速率随板缝宽度和料液质量分数的增大而减小;当基底输水量小于蒸发需求时,蒸发界面出现干涸现象,干涸现象出现后蒸发速率显著降低;当板缝宽度为0.5 mm时,与最大蒸发速率对应的料液质量分数为3.5%~5.0%;当料液质量分数为3.5%时,与最大蒸发速率对应的板缝宽度为0.5~0.6 mm;系统能量利用率变化规律与蒸发速率基本一致. 蒸发过程中蒸发量与料液供给量的匹配是影响板式基底结构的太阳能界面蒸发系统性能的重要因素.

关键词: 基底结构界面蒸发板缝宽度料液质量分数蒸发速率    
Abstract:

A three-dimensional mathematical model was established for a solar interfacial evaporation system with a plate substrate structure, and the evaporation process of the system was solved using Ansys Fluent software. The effects of the slit width and mass fraction of feed water on the interfacial evaporation process were investigated. Results show that the evaporation rate decreases with the increase of slit width and mass fraction of feed water. The evaporation interface dries up, and the evaporation rate decreases significantly when the substrate water delivery is less than the evaporation demand. When the slit width is 0.5 mm, the mass fraction of feed water corresponds to the maximum evaporation rate is 3.5% to 5.0%. When the mass fraction of feed water is 3.5%, the slit width corresponds to the maximum evaporation rate is 0.5 mm to 0.6 mm. The pattern of change in the energy utilization of the system is basically the same as the evaporation rate. The matching of evaporation rate and feed water supply during the evaporation process is one of the important factors affecting the performance of solar interfacial evaporation systems with plate substrate structure.

Key words: substrate structure    interfacial evaporation    slit width    mass fraction of feed water    evaporation rate
收稿日期: 2023-06-30 出版日期: 2024-07-01
CLC:  TK 519  
基金资助: 大连市科技创新基金资助项目(2021JJ12GX024); 辽宁省中央引导地方科技发展专项(2021JH6/10500150).
通讯作者: 刘晓华     E-mail: lisitong0522@163.com;lxh723@dlut.edu.cn
作者简介: 李思彤(1998—),女,硕士生,从事太阳能界面蒸发研究. orcid.org/0009-0009-6496-0960. E-mail:lisitong0522@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李思彤
葛洪宇
康培森
穆林
刘晓华

引用本文:

李思彤,葛洪宇,康培森,穆林,刘晓华. 具有板式基底结构的界面蒸发系统性能模拟[J]. 浙江大学学报(工学版), 2024, 58(7): 1498-1504.

Sitong LI,Hongyu GE,Peisen KANG,Lin MU,Xiaohua LIU. Numerical simulation of interfacial evaporation system performance with plate substrate structure. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1498-1504.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.019        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1498

图 1  板式基底结构界面蒸发系统物理模型
wB/%ρ/(kg?m?3)λ/(W?m?1?K?1)μ/(kg?m?1?s?1)Cp/(J?kg?1?K?1)σ/(N?m?1)
0996.40.6130.854×10?34 185.671.686×10?3
3.51 023.00.6110.920×10?34 001.572.789×10?3
5.01 034.40.6100.953×10?33 928.173.262×10?3
7.01 049.60.6091.000×10?33 835.373.892×10?3
13.01 095.20.6061.168×10?33 592.175.783×10?3
表 1  盐水的物性参数(T=300 K)
图 2  不同网格数的蒸发速率
图 3  蒸发实验台
图 4  蒸发速率随料液质量分数的变化
图 5  板缝宽度为0.5 mm时蒸发过程中液膜铺展变化
图 6  板缝宽度为0.5 mm时蒸发速率随时间的变化
图 7  蒸发过程中气液界面附近随时间变化的压力云图
图 8  蒸发平台上的温度分布变化
图 9  板缝宽度为0.4 mm时蒸发过程中液膜铺展变化
图 10  板缝宽度为0.8 mm时蒸发速率随时间的变化
图 11  板缝宽度为0.8 mm时蒸发过程中液膜的动态特性
图 12  板缝宽度对液膜厚度的影响 (wB=3.5%)
图 13  板缝宽度对蒸发速率的影响 (wB=3.5%)
图 14  蒸发过程中的液膜铺展 (wB=0)
图 15  蒸发速率随时间的变化 (wB=0)
图 16  不同料液质量分数下蒸发速率随板缝宽度的变化
图 17  不同料液质量分数下能量利用率随板缝宽度的变化
1 付清腾, 郭飞, 刘晓华 采用加湿除湿技术处理浓盐水的实验研究[J]. 浙江大学学报: 工学版, 2019, 53 (11): 2231- 2237
FU Qingteng, GUO Fei, LIU Xiaohua Experimental study of high salinity water treatment by humidification-dehumidification technology[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (11): 2231- 2237
2 VIKASH K C, SHAILENDRA K S, JEEVAN V T, et al A comprehensive review of direct solar desalination techniques and its advancements[J]. Journal of Cleaner Production, 2021, 284: 124719
doi: 10.1016/j.jclepro.2020.124719
3 ZHANG Y, XIONG T, NANDAKUMAR D K, et al. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation [J]. Advance Science . 2020, 7: 1903478.
4 HE J, ZHAO G, MU P, et al Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110111
doi: 10.1016/j.solmat.2019.110111
5 LI X, XU W, TANG M, et al Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences, 2016, 113 (49): 13953- 13958
doi: 10.1073/pnas.1613031113
6 XU N, HU X, XU W, et al Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017, 29 (28): 1606762
doi: 10.1002/adma.201606762
7 徐凝. 界面光-蒸汽转化: 仿生设计和综合利用[D]. 南京: 南京大学, 2019.
XU Ning. Interfacial heating based solar-vapor generation: bio-inspired designs and comprehensive applications [D]. Nanjing: Nanjing University, 2019.
8 LIU H, ZHANG X, HONG Z, et al A bioinspired capillary-driven pump for solar vapor generation[J]. Nano Energy, 2017, 42: 115- 121
doi: 10.1016/j.nanoen.2017.10.039
9 LIU Z, YANG Z, HUANG X, et al High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating[J]. Journal of Materials Chemistry A, 2017, 5 (37): 20044- 20052
doi: 10.1039/C7TA06384A
10 GUO A, MING X, FU Y, et al Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation[J]. ACS Applied Materials and Interfaces, 2017, 9 (35): 29958- 29964
doi: 10.1021/acsami.7b07759
11 徐馨宇, 胡楠, 范利武 土壤原位热传导修复水-汽-热耦合输运模拟[J]. 浙江大学学报: 工学版, 2022, 56 (1): 144- 151
XU Xinyu, HU Nan, FAN Liwu Coupled water-vapor-heat transport simulation on in-situ thermal conduction heating remediation of soil[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (1): 144- 151
12 LI Y, ALIBAKHSHI M A, ZHAO Y, et al Exploring ultimate water capillary evaporation in nanoscale conduits[J]. Nano Letters, 2017, 17 (8): 4813- 4819
doi: 10.1021/acs.nanolett.7b01620
13 RAMON G, ORON A Capillary rise of a meniscus with phase change[J]. Journal of Colloid and Interface Science, 2008, 327 (1): 145- 151
doi: 10.1016/j.jcis.2008.08.016
14 LIU M, WU J, GAN Y, et al Tuning capillary penetration in porous media: combining geometrical and evaporation effects[J]. International Journal of Heat and Mass Transfer, 2018, 123: 239- 250
doi: 10.1016/j.ijheatmasstransfer.2018.02.101
15 SHARQAWY M H, LIENHARD V J H, ZUBAIR S M Thermophysical properties of seawater: a review of existing correlations and data[J]. Desalination and Water Treatment, 2012, 16 (1–3): 354- 380
16 PERSAD A H, WARD C A Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation[J]. Chemical Reviews, 2016, 116 (14): 7727- 7767
doi: 10.1021/acs.chemrev.5b00511
[1] 李正伟, 陶伟明. 非共面薄膜-基底结构多层封装及延展性分析[J]. J4, 2012, 46(6): 1143-1147.