Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1436-1445    DOI: 10.3785/j.issn.1008-973X.2024.07.013
交通工程、土木工程     
钢板削弱型叠层橡胶支座力学性能试验研究
马乾瑛1(),李冰冰1,业嘉超1,2
1. 长安大学 建筑工程学院,陕西 西安 710064
2. 中国电力工程顾问集团西北电力设计院有限公司,陕西 西安 710075
Experimental study on mechanical properties of steel plate weakened laminated rubber bearings
Qianying MA1(),Bingbing LI1,Jiachao YE1,2
1. School of Civil Engineering, Chang’an University, Xi’an 710064, China
2. Northwest Electric Power Design Institute Limited Company of China Power Engineering Consulting Group, Xi’an 710075, China
 全文: PDF(2116 KB)   HTML
摘要:

结合厚层橡胶支座和普通叠层橡胶支座的优点设计新型钢板削弱型叠层橡胶支座,通过调节环形钢板的总数和位置进行支座水平和竖向刚度的有效控制. 选择3种中心橡胶层厚度的钢板削弱型叠层橡胶支座,分析所设计支座的滞回特性、刚度特性和耗能特性. 基于串-并联模型,构建水平和竖向刚度的计算模型. 试验结果表明,相比普通叠层橡胶支座,钢板削弱型叠层橡胶支座的水平和竖向刚度更低,水平和竖向耗能比更高,滞回曲线更光滑饱满. 所建模型的计算结果与试验结果的一致性较好,误差绝对值不超过10%. 所建模型在评估钢板削弱型叠层橡胶支座的水平和竖向刚度方面具有较高的精度和适用性.

关键词: 橡胶支座钢板削弱串-并联模型三维隔震滞回特性    
Abstract:

A new type of steel plate weakened laminated rubber bearing was designed, combining the advantages of thick rubber bearings and ordinary laminated rubber bearings. By adjusting the number and position of annular steel plates, the horizontal and vertical stiffness of the bearing were effectively controlled. The hysteretic characteristics, stiffness characteristics, and energy dissipation characteristics of the bearings with three central rubber layer thicknesses were studied. Based on the series-parallel model, calculation models for horizontal and vertical stiffness were established. Experimental results showed that compared with ordinary laminated rubber bearings, the steel plate weakened laminated rubber bearings had lower horizontal and vertical stiffness, higher horizontal and vertical energy dissipation ratios, and smoother and fuller hysteresis curves. The calculation results of the proposed model were in good agreement with the experimental results, with absolute errors of less than 10%. The proposed model had good accuracy and applicability in evaluating the horizontal and vertical stiffness of steel plate weakened laminated rubber bearings.

Key words: rubber bearing    steel plate weakened    series-parallel model    three-dimensional isolation    hysteretic characteristic
收稿日期: 2023-06-12 出版日期: 2024-07-01
CLC:  TU 352.1  
基金资助: 国家自然科学基金资助项目(51208041);陕西省自然科学基金资助项目(2020SF-382,2014JM2-5080);长安大学教学改革研究项目(20211822300103292815).
作者简介: 马乾瑛(1982—),男,副教授,博士,从事工程结构安全与减隔震控制研究. orcid.org/0000-0002-2305-1869. E-mail:mqy@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
马乾瑛
李冰冰
业嘉超

引用本文:

马乾瑛,李冰冰,业嘉超. 钢板削弱型叠层橡胶支座力学性能试验研究[J]. 浙江大学学报(工学版), 2024, 58(7): 1436-1445.

Qianying MA,Bingbing LI,Jiachao YE. Experimental study on mechanical properties of steel plate weakened laminated rubber bearings. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1436-1445.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.013        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1436

图 1  钢板削弱型叠层橡胶支座示意图
参数SK-1SK-2SK-3SK-4
橡胶层直径/mm400400400400
内部厚层橡胶直径/mm0200200200
外部单层橡胶层厚度/mm4.94.94.94.9
外部橡胶层数12121212
中心橡胶层数0643
单层钢板厚度/mm2222
圆形钢板层数11532
环形钢板层数0689
空心孔直径/mm40404040
表 1  4类叠层橡胶支座的参数
图 2  水平和竖向加载设备图
工况p/MPaf/Hzγ/%
1-180.05±50
1-280.05±100
1-380.05±150
1-480.05±200
1-560.05±100
1-6100.05±100
1-7120.05±100
1-880.03±100
1-980.08±100
1-1080.10±100
表 2  叠层橡胶支座的水平性能相关性测试工况
图 3  不同剪应变下叠层橡胶支座的滞回曲线
图 4  不同剪应变下叠层橡胶支座的等效水平刚度和阻尼比变化
图 5  不同压应力下叠层橡胶支座的滞回曲线
图 6  不同压应力下叠层橡胶支座的等效水平刚度和阻尼比变化
图 7  不同加载频率下叠层橡胶支座的滞回曲线
图 8  不同加载频率下叠层橡胶支座的等效水平刚度和阻尼比变化
图 9  不同压应力下叠层橡胶支座的力-位移曲线
图 10  不同压应力下叠层橡胶支座的竖向刚度变化
图 11  不同加载频率下叠层橡胶支座的力-位移曲线
图 12  不同加载频率下叠层橡胶支座的竖向刚度变化
图 13  钢板削弱型叠层橡胶支座的剪切变形和刚度模型
试件KH0/(kN·mm?1)e/%
理论值试验值
SK-11.1321.1531.8
SK-21.1131.105?0.7
SK-31.0961.027?6.7
SK-41.0730.996?7.1
表 3  叠层橡胶支座的水平刚度试验值与理论值
图 14  钢板削弱型叠层橡胶支座的竖向刚度模型
试件Kv/(kN·mm?1)e/%
理论值试验值
SK-1974.721055.418.28
SK-2584.71613.244.88
SK-3407.44432.236.08
SK-4374.43410.029.50
表 4  叠层橡胶支座的竖向刚度试验值与理论值
1 吴应雄, 黄净, 林树枝, 等 建筑隔震构造设计与应用现状[J]. 土木工程学报, 2018, 51 (2): 62- 73
WU Yingxiong, HUANG Jing, LIN Shuzhi, et al Design and application status of seismic isolation constitution of building[J]. China Civil Engineering Journal, 2018, 51 (2): 62- 73
2 GAO X, QI H Research on numerical simulation of laminated rubber bearing[J]. IOP Conference Series: Earth and Environmental Science, 2019, 371 (4): 042054
doi: 10.1088/1755-1315/371/4/042054
3 彭天波, 李翊鸣, 吴意诚 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35 (Suppl.1): 300- 306
PENG Tianbo, LI Yiming, WU Yicheng Real time hybrid test of seismic performance of laminated natural rubber bearings[J]. Engineering Mechanics, 2018, 35 (Suppl.1): 300- 306
doi: 10.6052/j.issn.1000-4750.2017.05.S058
4 朱玉华, 艾方亮, 任祥香, 等 厚层铅芯橡胶支座力学性能[J]. 同济大学学报: 自然科学版, 2018, 46 (9): 1189- 1194
ZHU Yuhua, AI Fangliang, REN Xiangxiang, et al Mechanical properties of thick lead-rubber bearings[J]. Journal of Tongji University: Natural Science, 2018, 46 (9): 1189- 1194
5 吴宜峰, 司明非, 鲁松, 等 尼龙织物增强厚层橡胶支座力学性能试验研究[J]. 土木工程学报, 2022, 55 (Suppl.1): 126- 131
WU Yifeng, SI Mingfei, LU Song, et al Experimental research on the mechanical properties of nylon fabric reinforced thick rubber bearings[J]. China Civil Engineering Journal, 2022, 55 (Suppl.1): 126- 131
6 吴宜峰, 司明非, 李爱群, 等 预应力厚层橡胶三维隔震装置的力学性能分析[J]. 东南大学学报: 自然科学版, 2023, 53 (1): 37- 43
WU Yifeng, SI Mingfei, LI Aiqun, et al Analysis on mechanical properties three-dimensional thick rubber seismic isolation device[J]. Journal of Southeast University: Natural Science Edition, 2023, 53 (1): 37- 43
7 KUMAR M, WHITTAKER A S, CONSTANTINOU M C Experimental investigation of cavitation in elastomeric seismic isolation bearings[J]. Engineering Structures, 2015, 101: 290- 305
doi: 10.1016/j.engstruct.2015.07.014
8 FUKASAWA T, OKAMURA S, YAMAMOTO T, et al. Development on rubber bearings for sodium-cooled fast reactor: part 2—fundamental characteristics of half-scale rubber bearings based on static test [C]// ASME 2015 Pressure Vessels and Piping Conference . Boston: ASME, 2015.
9 FUKASAWA T, OKAMURA S, YAMAMOTO T, et al. Development on rubber bearings for sodium-cooled fast reactor: part 3—ultimate properties of a half scale thick rubber bearings based on breaking test [C]// ASME 2016 Pressure Vessels and Piping Conference . Vancouver: ASME, 2016.
10 WATAKABE T, YAMAMOTON T, FUKASAWA T, et al. Development on rubber bearings for sodium-cooled fast reactor: part 4—aging properties of a half scale thick rubber bearings based on breaking test [C]// ASME 2016 Pressure Vessels and Piping Conference . Vancouver: ASME, 2016.
11 李吉超, 尚庆学, 罗清宇, 等 厚层橡胶支座的力学性能试验研究[J]. 振动与冲击, 2019, 38 (9): 157- 165
LI Jichao, SHANG Qingxue, LUO Qingyu, et al Tests for mechanical performance of thick rubber bearings[J]. Journal of Vibration and Shock, 2019, 38 (9): 157- 165
12 张增德, 周颖. 叠层厚橡胶支座竖向压缩与拉伸力学性能研究[EB/OL]. (2023-02-26)[2023-08-19]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230223.1724.014.html.
13 邹立华, 饶宇, 黄凯, 等 预应力厚层橡胶支座隔震性能研究[J]. 建筑结构学报, 2013, 34 (2): 76- 82
ZOU Lihua, RAO Yu, HUANG Kai, et al Research on isolating property of prestressed thick rubber bearings[J]. Journal of Building Structures, 2013, 34 (2): 76- 82
14 ZHOU Y, MA K, CHEN P, et al Investigations on train-induced vibration and vibration control of an over-track building using thick-layer rubber bearings[J]. The Structural Design of Tall and Special Buildings, 2022, 31 (1): e1898
doi: 10.1002/tal.1898
15 ORFEO A, TUBALDI E, MUHR A H, et al Mechanical behaviour of rubber bearings with low shape factor[J]. Engineering Structures, 2022, 266: 114532
doi: 10.1016/j.engstruct.2022.114532
16 YAMATAKA M, IWASAKI K, HOSHIKAWA T, et al Development of lowrise over-track buildings using thick laminate rubber seismic isolation materials[J]. JR East Technical Review, 2011, (21): 15- 21
17 陈浩文. 厚肉型橡胶隔振支座在地铁周边建筑物隔振中的应用[D]. 北京: 清华大学, 2014.
CHEN Haowen. Application of thick rubber bearing in vibration isolation for metro surrounding building structures [D]. Beijing: Tsinghua University, 2014.
18 盛涛, 李亚明, 张晖, 等 地铁邻近建筑的厚层橡胶支座基础隔振试验研究[J]. 建筑结构学报, 2015, 36 (2): 35- 40
SHENG Tao, LI Yaming, ZHANG Hui, et al field experiment study of subway nearby building’s base isolation by laminated thick rubber isolator[J]. Journal of Building Structures, 2015, 36 (2): 35- 40
19 PAN P, SHEN S, SHEN Z, et al Experimental investigation on the effectiveness of laminated rubber bearings to isolate metro generated vibration[J]. Measurement, 2018, 122: 554- 562
doi: 10.1016/j.measurement.2017.07.019
20 全国橡胶与橡胶制品标准化技术委员会橡胶杂品分会. 橡胶支座第3部分: 建筑隔震橡胶支座: GB20688.3—2006 [S]. 北京: 中国标准出版社, 2006.
21 全国橡胶与橡胶制品标准化技术委员会橡胶杂品分会. 橡胶支座第1部分: 隔震橡胶支座试验方法: GB/T 20688.1—2007 [S]. 北京: 中国标准出版社, 2007.
[1] 王维,高尚信,李爱群,王星星. 基于非对称模型的碟簧隔震单自由度体系地震响应[J]. 浙江大学学报(工学版), 2020, 54(6): 1095-1105.
[2] 章永乐,蒋建群,刘加进,王振宇. 框架结构地震损伤评估与抗震设计[J]. J4, 2011, 45(7): 1294-1300.
[3] 肖南, 容里, 董石麟. 双层球面网壳振动主动控制作动器位置优化[J]. J4, 2010, 44(5): 942-949.