Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (11): 2235-2243    DOI: 10.3785/j.issn.1008-973X.2023.11.011
环境与土木工程     
水泥浆体中石墨烯纳米片团聚的 X射线计算机断层扫描解析
张华献1,2(),高建科1,2,何建国1,2,徐铖基2,3,党楠茜2,3,曾强3,*()
1. 浙江交工金筑交通建设有限公司,浙江 杭州 310051
2. 浙江大学-浙江交工协同创新联合研究中心,浙江 杭州 310058
3. 浙江大学 建筑工程学院,浙江 杭州 310058
X-ray computed tomography analysis of graphene nanoplatelets agglomeration in cement paste
Hua-xian ZHANG1,2(),Jian-ke GAO1,2,Jian-guo HE1,2,Cheng-ji XU2,3,Nan-xi DANG2,3,Qiang ZENG3,*()
1. Zhejiang Tongtu Traffic Engineering Co. Ltd, Hangzhou 310051, China
2. ZJU-ZCCC Institute of Collaborative Innovation, Hangzhou 310058, China
3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(3454 KB)   HTML
摘要:

为了实现纳米颗粒在水泥基材料中的均匀分散以及探究如何无损地检验纳米颗粒的分散程度,利用石墨烯纳米片(GNPs)作为代表性的碳纳米添加剂,设置3种不同的超声分散方式 (VSD)?直接、间接和直接-间接结合分散,得到具有不同GNPs分散状态的水泥浆体. 利用X射线计算机断层扫描技术(XCT)对孔隙和石墨烯团聚体进行无损表征;基于两者的形状特征差异(球形度和紧密度)筛分出GNPs团聚体,解析其分布、数量和粒径等;利用扫描电子显微镜(SEM)对GNPs团聚体形貌进行观察;进行抗压强度测试以验证GNPs分散情况对宏观性能的影响. XCT结果表明基于形状特征能够无损地区分出GNPs团聚体,直接分散作用下GNPs团聚体数量和累计体积均最小;SEM观测结果表明GNPs团聚体具有复杂多样的形貌;力学测试结果表明抗压强度与分散质量呈正相关关系.

关键词: 水泥基材料石墨烯团聚体X射线断层扫描(XCT)形状特征    
Abstract:

Graphene nanoplatelets (GNPs) were used as a representative carbon nano-additive, to achieve uniform dispersion of nanoparticles in cement-based materials and investigate non-destructive methods for assessing the degree of dispersion. And three different ultrasonic dispersion (USD) methods were set up: direct, indirect and direct-indirect combined USD. These methods were utilized to produce cement pastes with varying degrees of GNPs dispersion. X-ray computed tomography (XCT) was employed to characterize pores and GNPs agglomerates non-destructively. Based on differences in morphology features (sphericity and compactness), GNPs agglomerates were identified and their distribution, quantity and size were analyzed. Scanning electron microscopy (SEM) was used to observe the morphology of GNPs agglomerates. Compressive strength testing was conducted to demonstrate the influence of GNPs dispersion on macroscopic properties. The XCT results show that GNPs agglomerates can be distinguished non-destructively based on shape features. The results also indicate that the number and cumulative volume of GNPs agglomerates are the smallest under direct USD. SEM observation results show that GNPs agglomerates have complex and diverse morphologies. Mechanical results indicate the positive correlation between compressive strength and dispersion quality.

Key words: cement-based materials    graphene    agglomerate    X-ray computed tomography (XCT)    shape features
收稿日期: 2022-12-14 出版日期: 2023-12-11
CLC:  TU 599  
基金资助: 浙江大学-浙江交工协同创新中心资助项目(ZDJG2021008);国家自然科学基金重点资助项目(52038004)
通讯作者: 曾强     E-mail: zhuaxian@zjjtgc.com;cengq14@zju.edu.cn
作者简介: 张华献(1983—),男,高级工程师,从事混凝土材料和结构性能研究. orcid.org/0009-0005-2291-7279. E-mail: zhuaxian@zjjtgc.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张华献
高建科
何建国
徐铖基
党楠茜
曾强

引用本文:

张华献,高建科,何建国,徐铖基,党楠茜,曾强. 水泥浆体中石墨烯纳米片团聚的 X射线计算机断层扫描解析[J]. 浙江大学学报(工学版), 2023, 57(11): 2235-2243.

Hua-xian ZHANG,Jian-ke GAO,Jian-guo HE,Cheng-ji XU,Nan-xi DANG,Qiang ZENG. X-ray computed tomography analysis of graphene nanoplatelets agglomeration in cement paste. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2235-2243.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.011        https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2235

化学组成 wB/% 矿物组成 wB%
SiO2 22.15 C3S 56.54
Al2O3 4.51 C2S 20.87
Fe2O3 3.39 C3A 6.22
CaO 65.36 C4AF 10.31
MgO 2.31
SO3 0.46
Na2Oeq 0.49
f-CaO 0.95
表 1  水泥的化学和矿物组成
参数 数值 参数 数值
D/μm 5~10 ρt/(g·cm?3) 0.075
T/nm 3~10 ρa/(g·cm?3) 0.050
SSA/(m2·g?1) 31.657
表 2  GNPs的物理性能
图 1  不同超声分散方式和水泥试样制备过程示意图
图 2  X射线计算断层扫描测试和分析流程
图 3  所选分析区域的灰度分布图
图 4  缺陷球形度与体积之间的关系
图 5  缺陷紧密度与球形度之间的关系以及GNPs团聚体示意图
图 6  缺陷紧密度与体积之间的关系
图 7  不同形状参数条件对应的缺陷3D图
图 8  GNPs团聚体量化统计信息
图 9  断面微观形貌和GNPs团聚体的形貌
1 NEWTSON C M, ALLENA S Materials specification needs for future development of ultra high performance concrete[J]. Advances in Civil Engineering Materials, 2014, 4 (2): 17- 37
2 DONG S F, LI L W, ASHOUR A, et al Self-assembled 0D/2D nano carbon materials engineered smart and multifunctional cement-based composites[J]. Construction and Building Materials, 2021, 272: 121632
3 赵昕, 黄存旺, 傅佳丽, 等 石墨烯水泥基复合材料的电学性能[J]. 建筑材料学报, 2022, 25 (1): 8- 15
ZHAO Xin, HUANG Cun-wang, FU Jia-li, et al Electrical properties of graphene cement based composites[J]. Journal of Building Materials, 2022, 25 (1): 8- 15
doi: 10.3969/j.issn.1007-9629.2022.01.002
4 HAN M Z, MUHAMMAD Y, WEI Y H, et al A review on the development and application of graphene based materials for the fabrication of modified asphalt and cement[J]. Construction and Building Materials, 2021, 285: 122885
doi: 10.1016/j.conbuildmat.2021.122885
5 MASSION C, LU Y X, CRANDALL D, et al Graphene nanoplatelets reinforced cement as a solution to leaky wellbores reinforcing weak points in hydrated Portland cement with graphene nanoparticles improves mechanical and chemical durability of wellbore cements[J]. Cement and Concrete Research, 2022, 133: 104726
doi: 10.1016/j.cemconcomp.2022.104726
6 MENG W N, KHAYAT K H Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers[J]. Composites Part B: Engineering, 2016, 107: 113- 122
doi: 10.1016/j.compositesb.2016.09.069
7 DU H J, JACEY GAO H C, PANG S D Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet[J]. Cement and Concrete Research, 2016, 83: 114- 123
doi: 10.1016/j.cemconres.2016.02.005
8 HUANG H H, TENG L, GAO X J, et al Effect of carbon nanotube and graphite nanoplatelet on composition, structure, and nano-mechanical properties of C-S-H in UHPC[J]. Cement and Concrete Research, 2022, 154: 106713
doi: 10.1016/j.cemconres.2022.106713
9 DONG W K, LI W R, ZHU X Q, et al Multifunctional cementitious composites with integrated self-sensing and hydrophobic capacities toward smart structural health monitoring[J]. Cement and Concrete Composites, 2021, 118: 103962
doi: 10.1016/j.cemconcomp.2021.103962
10 HAN B G, SUN S W, DING S Q, et al Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 69- 81
doi: 10.1016/j.compositesa.2014.12.002
11 LEE S J, AHN D, YOU I, et al Wireless cement-based sensor for self-monitoring of railway concrete infrastructures[J]. Automation in Construction, 2020, 119: 103323
doi: 10.1016/j.autcon.2020.103323
12 MONTEIRO A O, COSTA P M, CACHIM P B Dynamic sensing properties of a multifunctional cement composite with carbon black for traffic monitoring[J]. Smart Materials and Structures, 2020, 29: 025023
doi: 10.1088/1361-665X/ab62e2
13 LIU J T, FU J L, YANG Y, et al Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets[J]. Construction and Building Materials, 2019, 199: 1- 11
doi: 10.1016/j.conbuildmat.2018.12.006
14 ANTONELLA D A, TIECCO M, MEONI A, et al Improved strain sensing properties of cement-based sensors through enhanced carbon nanotube dispersion[J]. Cement and Concrete Composites, 2021, 115: 103842
doi: 10.1016/j.cemconcomp.2020.103842
15 WANG B M, JIANG R S, SONG W Z, et al Controlling dispersion of graphene nanoplatelets in aqueous solution by ultrasonic technique[J]. Russian Journal of Physical Chemistry A, 2017, 91 (8): 1517- 1526
doi: 10.1134/S0036024417080040
16 ZHU X H, ZHANG Z L, YANG K, et al Characterisation of pore structure development of alkali-activated slag cement during early hydration using electrical responses[J]. Cement and Concrete Composites, 2018, 89: 139- 149
doi: 10.1016/j.cemconcomp.2018.02.016
17 PENG Y, ZHAO G R, QI Y X, et al In-situ assessment of the water-penetration resistance of polymer modified cement mortars by μ-XCT, SEM and EDS[J]. Cement and Concrete Composites, 2020, 114: 103821
doi: 10.1016/j.cemconcomp.2020.103821
18 杨林, 张云升, 张春晓 基于X-CT的非饱和水泥基材料水分传输与渗透系数计算[J]. 硅酸盐通报, 2020, 39 (12): 3775- 3782
YANG Lin, ZHANG Yun-sheng, ZHANG Chun-xiao Water transport and permeability coefficient calculation for unsaturated cement-based materials based on X-CT[J]. Bulletin of the Chinese Ceramic Society, 2020, 39 (12): 3775- 3782
doi: 10.16552/j.cnki.issn1001-1625.2020.12.005
19 王彦琪. 岩石单轴压缩破坏过程的CT试验研究 [D]. 太原: 太原理工大学, 2013.
WANG Yan-qi. The CT experimental research on the rock failure process under uniaxial compression loading [D]. Taiyuan: Taiyuan university of technology, 2013.
20 张静, 邹道勤, 王海龙, 等 3D 打印混凝土层条间界面抗拉性能与本构模型[J]. 浙江大学学报: 工学版, 2021, 55 (11): 2178- 2185
ZHANG Jing, ZOU Dao-qin, WANG Hai-long, et al Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (11): 2178- 2185
21 王小虎, 吉克尼都, 陈珊, 等 X 射线透射成像技术原位追踪混凝土吸水过程[J]. 浙江大学学报: 工学版, 2021, 55 (4): 727- 732
WANG Xiao-hu, JIKE Ni-du, CHEN Shan, et al Water imbibition in concrete in-situ traced by transmission X-ray radiography[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (4): 727- 732
22 SHEN Y N, MA X B, HUANG J T, et al Near-zero restrained shrinkage polymer concrete incorporating ceramsite and waste rubber powder[J]. Cement and Concrete Composites, 2020, 110: 103584
doi: 10.1016/j.cemconcomp.2020.103584
23 林剑. 活性粉末混凝土的力学性能及孔结构研究 [D]. 海口: 海南大学, 2019.
LIN Jian. Research on mechanical properties and pore structure of reactive powder concrete [D]. Haikou: Hainan University, 2019.
24 WONG H S, HEAD M K, BUENFELDN R Pore segmentation of cement-based materials from backscattered electron images[J]. Cement Concrete Research, 2006, 36: 1083- 1090
doi: 10.1016/j.cemconres.2005.10.006
25 ZENG Q, CHEN S, YANG P, et al Reassessment of mercury intrusion porosimetry for characterizing the pore structure of cement-based porous materials by monitoring the mercury entrapments with X-ray computed tomography[J]. Cement Concrete Composites, 2020, 113: 103726
doi: 10.1016/j.cemconcomp.2020.103726
26 TAO J, WANG X H, WANG Z D, et al Graphene nanoplatelets as an effective additive to tune the microstructure and piezoresistive properties of cement-based composites[J]. Construction and Building Materials, 2019, 209: 665- 678
doi: 10.1016/j.conbuildmat.2019.03.173
27 吴经纬. 石墨烯纳米片/碳纳米管水泥基复合材料阻尼性能研究[D]. 杭州: 浙江大学, 2022.
WU Jing-wei. Damping properties of cement-based composites containing graphene-nanoplatelets/carbon nanotubes [D]. Hangzhou: Zhejiang University, 2022.
[1] 吴志强,卫军,董荣珍. 柔性层状石墨烯感应元件制备及其力敏特性[J]. 浙江大学学报(工学版), 2024, 58(1): 150-160.
[2] 郭萌,张玉茹,魏幸,王文静. 固胺负载SBA-15的石墨烯改性及其CO2吸附性能[J]. 浙江大学学报(工学版), 2022, 56(8): 1588-1596.
[3] 任王瑜,侯世成,姜孝男,陈卫祥. MoS2/硼掺杂石墨烯的电化学析氢和储锂性能[J]. 浙江大学学报(工学版), 2020, 54(8): 1628-1636.
[4] 吴志强,卫军,董荣珍. 石墨烯压阻复合材料及其在裂纹监测中的应用[J]. 浙江大学学报(工学版), 2020, 54(2): 233-240.
[5] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[6] 吴萌, 姬永生, 陈晓峰, 张领雷, 陈向东. 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报(工学版), 2016, 50(8): 1479-1485.
[7] 肖丙刚,谢治毅,孙润亮. 基于石墨烯的隔离器理论设计与分析[J]. 浙江大学学报(工学版), 2015, 49(1): 42-47.
[8] 王晓,姚晓莉,候鉴峰,范利武,徐旭,俞自涛,胡亚才. 氧化石墨烯水悬浮液的非等温结晶过程[J]. 浙江大学学报(工学版), 2014, 48(7): 1272-1277.
[9] 陈磊 潘翔 叶修梓 张三元 彭维. 基于本体的产品知识表达和检索技术研究[J]. J4, 2008, 42(12): 2037-2042.
[10] 诸葛振荣 张凤梧. 一种基于形状的意匠图检索算法[J]. J4, 2006, 40(3): 478-481.