环境与土木工程 |
|
|
|
|
水泥浆体中石墨烯纳米片团聚的 X射线计算机断层扫描解析 |
张华献1,2(),高建科1,2,何建国1,2,徐铖基2,3,党楠茜2,3,曾强3,*() |
1. 浙江交工金筑交通建设有限公司,浙江 杭州 310051 2. 浙江大学-浙江交工协同创新联合研究中心,浙江 杭州 310058 3. 浙江大学 建筑工程学院,浙江 杭州 310058 |
|
X-ray computed tomography analysis of graphene nanoplatelets agglomeration in cement paste |
Hua-xian ZHANG1,2(),Jian-ke GAO1,2,Jian-guo HE1,2,Cheng-ji XU2,3,Nan-xi DANG2,3,Qiang ZENG3,*() |
1. Zhejiang Tongtu Traffic Engineering Co. Ltd, Hangzhou 310051, China 2. ZJU-ZCCC Institute of Collaborative Innovation, Hangzhou 310058, China 3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China |
引用本文:
张华献,高建科,何建国,徐铖基,党楠茜,曾强. 水泥浆体中石墨烯纳米片团聚的 X射线计算机断层扫描解析[J]. 浙江大学学报(工学版), 2023, 57(11): 2235-2243.
Hua-xian ZHANG,Jian-ke GAO,Jian-guo HE,Cheng-ji XU,Nan-xi DANG,Qiang ZENG. X-ray computed tomography analysis of graphene nanoplatelets agglomeration in cement paste. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2235-2243.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.011
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2235
|
1 |
NEWTSON C M, ALLENA S Materials specification needs for future development of ultra high performance concrete[J]. Advances in Civil Engineering Materials, 2014, 4 (2): 17- 37
|
2 |
DONG S F, LI L W, ASHOUR A, et al Self-assembled 0D/2D nano carbon materials engineered smart and multifunctional cement-based composites[J]. Construction and Building Materials, 2021, 272: 121632
|
3 |
赵昕, 黄存旺, 傅佳丽, 等 石墨烯水泥基复合材料的电学性能[J]. 建筑材料学报, 2022, 25 (1): 8- 15 ZHAO Xin, HUANG Cun-wang, FU Jia-li, et al Electrical properties of graphene cement based composites[J]. Journal of Building Materials, 2022, 25 (1): 8- 15
doi: 10.3969/j.issn.1007-9629.2022.01.002
|
4 |
HAN M Z, MUHAMMAD Y, WEI Y H, et al A review on the development and application of graphene based materials for the fabrication of modified asphalt and cement[J]. Construction and Building Materials, 2021, 285: 122885
doi: 10.1016/j.conbuildmat.2021.122885
|
5 |
MASSION C, LU Y X, CRANDALL D, et al Graphene nanoplatelets reinforced cement as a solution to leaky wellbores reinforcing weak points in hydrated Portland cement with graphene nanoparticles improves mechanical and chemical durability of wellbore cements[J]. Cement and Concrete Research, 2022, 133: 104726
doi: 10.1016/j.cemconcomp.2022.104726
|
6 |
MENG W N, KHAYAT K H Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers[J]. Composites Part B: Engineering, 2016, 107: 113- 122
doi: 10.1016/j.compositesb.2016.09.069
|
7 |
DU H J, JACEY GAO H C, PANG S D Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet[J]. Cement and Concrete Research, 2016, 83: 114- 123
doi: 10.1016/j.cemconres.2016.02.005
|
8 |
HUANG H H, TENG L, GAO X J, et al Effect of carbon nanotube and graphite nanoplatelet on composition, structure, and nano-mechanical properties of C-S-H in UHPC[J]. Cement and Concrete Research, 2022, 154: 106713
doi: 10.1016/j.cemconres.2022.106713
|
9 |
DONG W K, LI W R, ZHU X Q, et al Multifunctional cementitious composites with integrated self-sensing and hydrophobic capacities toward smart structural health monitoring[J]. Cement and Concrete Composites, 2021, 118: 103962
doi: 10.1016/j.cemconcomp.2021.103962
|
10 |
HAN B G, SUN S W, DING S Q, et al Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 69- 81
doi: 10.1016/j.compositesa.2014.12.002
|
11 |
LEE S J, AHN D, YOU I, et al Wireless cement-based sensor for self-monitoring of railway concrete infrastructures[J]. Automation in Construction, 2020, 119: 103323
doi: 10.1016/j.autcon.2020.103323
|
12 |
MONTEIRO A O, COSTA P M, CACHIM P B Dynamic sensing properties of a multifunctional cement composite with carbon black for traffic monitoring[J]. Smart Materials and Structures, 2020, 29: 025023
doi: 10.1088/1361-665X/ab62e2
|
13 |
LIU J T, FU J L, YANG Y, et al Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets[J]. Construction and Building Materials, 2019, 199: 1- 11
doi: 10.1016/j.conbuildmat.2018.12.006
|
14 |
ANTONELLA D A, TIECCO M, MEONI A, et al Improved strain sensing properties of cement-based sensors through enhanced carbon nanotube dispersion[J]. Cement and Concrete Composites, 2021, 115: 103842
doi: 10.1016/j.cemconcomp.2020.103842
|
15 |
WANG B M, JIANG R S, SONG W Z, et al Controlling dispersion of graphene nanoplatelets in aqueous solution by ultrasonic technique[J]. Russian Journal of Physical Chemistry A, 2017, 91 (8): 1517- 1526
doi: 10.1134/S0036024417080040
|
16 |
ZHU X H, ZHANG Z L, YANG K, et al Characterisation of pore structure development of alkali-activated slag cement during early hydration using electrical responses[J]. Cement and Concrete Composites, 2018, 89: 139- 149
doi: 10.1016/j.cemconcomp.2018.02.016
|
17 |
PENG Y, ZHAO G R, QI Y X, et al In-situ assessment of the water-penetration resistance of polymer modified cement mortars by μ-XCT, SEM and EDS[J]. Cement and Concrete Composites, 2020, 114: 103821
doi: 10.1016/j.cemconcomp.2020.103821
|
18 |
杨林, 张云升, 张春晓 基于X-CT的非饱和水泥基材料水分传输与渗透系数计算[J]. 硅酸盐通报, 2020, 39 (12): 3775- 3782 YANG Lin, ZHANG Yun-sheng, ZHANG Chun-xiao Water transport and permeability coefficient calculation for unsaturated cement-based materials based on X-CT[J]. Bulletin of the Chinese Ceramic Society, 2020, 39 (12): 3775- 3782
doi: 10.16552/j.cnki.issn1001-1625.2020.12.005
|
19 |
王彦琪. 岩石单轴压缩破坏过程的CT试验研究 [D]. 太原: 太原理工大学, 2013. WANG Yan-qi. The CT experimental research on the rock failure process under uniaxial compression loading [D]. Taiyuan: Taiyuan university of technology, 2013.
|
20 |
张静, 邹道勤, 王海龙, 等 3D 打印混凝土层条间界面抗拉性能与本构模型[J]. 浙江大学学报: 工学版, 2021, 55 (11): 2178- 2185 ZHANG Jing, ZOU Dao-qin, WANG Hai-long, et al Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (11): 2178- 2185
|
21 |
王小虎, 吉克尼都, 陈珊, 等 X 射线透射成像技术原位追踪混凝土吸水过程[J]. 浙江大学学报: 工学版, 2021, 55 (4): 727- 732 WANG Xiao-hu, JIKE Ni-du, CHEN Shan, et al Water imbibition in concrete in-situ traced by transmission X-ray radiography[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (4): 727- 732
|
22 |
SHEN Y N, MA X B, HUANG J T, et al Near-zero restrained shrinkage polymer concrete incorporating ceramsite and waste rubber powder[J]. Cement and Concrete Composites, 2020, 110: 103584
doi: 10.1016/j.cemconcomp.2020.103584
|
23 |
林剑. 活性粉末混凝土的力学性能及孔结构研究 [D]. 海口: 海南大学, 2019. LIN Jian. Research on mechanical properties and pore structure of reactive powder concrete [D]. Haikou: Hainan University, 2019.
|
24 |
WONG H S, HEAD M K, BUENFELDN R Pore segmentation of cement-based materials from backscattered electron images[J]. Cement Concrete Research, 2006, 36: 1083- 1090
doi: 10.1016/j.cemconres.2005.10.006
|
25 |
ZENG Q, CHEN S, YANG P, et al Reassessment of mercury intrusion porosimetry for characterizing the pore structure of cement-based porous materials by monitoring the mercury entrapments with X-ray computed tomography[J]. Cement Concrete Composites, 2020, 113: 103726
doi: 10.1016/j.cemconcomp.2020.103726
|
26 |
TAO J, WANG X H, WANG Z D, et al Graphene nanoplatelets as an effective additive to tune the microstructure and piezoresistive properties of cement-based composites[J]. Construction and Building Materials, 2019, 209: 665- 678
doi: 10.1016/j.conbuildmat.2019.03.173
|
27 |
吴经纬. 石墨烯纳米片/碳纳米管水泥基复合材料阻尼性能研究[D]. 杭州: 浙江大学, 2022. WU Jing-wei. Damping properties of cement-based composites containing graphene-nanoplatelets/carbon nanotubes [D]. Hangzhou: Zhejiang University, 2022.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|