Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1780-1788    DOI: 10.3785/j.issn.1008-973X.2022.09.011
土木工程、交通工程     
基于改进内聚力模型的沥青超薄罩面层间失效行为分析
肖敏敏(),钱思博
上海应用技术大学 城市建设与安全工程学院,上海 201418
Interlayer failure behavior analysis of ultra-thin asphalt overlay based on improved cohesive model
Min-min XIAO(),Si-bo QIAN
School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai 201418, China
 全文: PDF(1334 KB)   HTML
摘要:

为了准确预测沥青超薄罩面层间失效行为,在考虑层间黏结应力与摩擦效果耦合作用的基础上,引入改进内聚力模型表征界面接触特性,基于沥青超薄罩面直剪试验进行数值模拟,描述沥青超薄罩面层间失效行为演化特征,通过直剪试验验证改进内聚力模型的可靠性. 研究结果表明:层间黏结应力和层间摩擦系数由摩尔?库伦理论拟合直剪试验结果得到;沥青超薄罩面界面的切应力与剪切位移的关系分为切应力应变弹性强化、切应力应变软化及残余应力应变阶段;选择临界断裂能作为评价沥青超薄罩面层间失效行为的指标,该指标的数值随正向应力的增大而增加;数值模拟结果与试验结果一致度较高,验证了使用改进内聚力模型进行沥青超薄罩面层间剪切破坏行为研究的可行性.

关键词: 道路工程沥青超薄罩面改进内聚力模型层间失效临界断裂能    
Abstract:

In order to accurately predict the interlaminar failure behavior of asphalt ultra-thin overlay, on the basis of considering the coupling effect of interlayer bonding stress and friction effect, an improved cohesion model was introduced to characterize the interface contact characteristics. Based on the direct shear test of asphalt ultra-thin overlay, numerical simulation was carried out to describe the evolution characteristics of interlaminar failure behavior of asphalt ultra-thin overlay. The reliability of the improved cohesive model was verified by direct shear test. Results show that the results of direct shear test are fitted by Moore-Coulomb theory, and the bond stress and friction coefficient between layers can be obtained respectively. The relationship between shear stress and shear displacement of asphalt ultra-thin overlay interface can be divided into shear stress-strain elastic strengthening stage, shear stress-strain softening stage and residual stress-strain stage. Critical fracture energy can be used as an index to evaluate the failure behavior of ultra-thin asphalt overlay, which increases with the increase of normal stress. The numerical simulation results are in good agreement with the experimental results, which verifies the feasibility of studying the interlayer shear failure behavior of asphalt ultra-thin cover used by the improved cohesive model.

Key words: road engineering    ultra-thin asphalt overlay    improved cohesive model    failure of interlayer    critical fracture energy
收稿日期: 2021-08-26 出版日期: 2022-09-28
CLC:  U 41  
基金资助: 上海应用技术大学中青年教师科技人才发展基金资助项目(ZQ2019-10);上海市大学生创新创业训练项目(DCX20210269)
作者简介: 肖敏敏(1983—),女,副教授,从事道路结构与材料研究. orcid.org/0000-0002-0935-1371. E-mail: xiaominmin329@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
肖敏敏
钱思博

引用本文:

肖敏敏,钱思博. 基于改进内聚力模型的沥青超薄罩面层间失效行为分析[J]. 浙江大学学报(工学版), 2022, 56(9): 1780-1788.

Min-min XIAO,Si-bo QIAN. Interlayer failure behavior analysis of ultra-thin asphalt overlay based on improved cohesive model. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1780-1788.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.011        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1780

图 1  沥青超薄罩面直剪试验试件尺寸及加载示意图
Mpa
$ \sigma $ $ {\tau _{{\text{max}}}} $ $ \sigma $ $ {\tau _{{\text{max}}}} $
0 0.089 1 0.6 0.275 4
0.2 0.176 2 0.8 0.355 6
0.4 0.245 3 1.0 0.485 2
表 1  不同法向应力作用下沥青超薄罩面试件抗剪强度
图 2  不同法向应力下直剪试验结果
图 3  转换参数对破坏形态参数的影响
参数 数值 参数 数值
$ {E_{\text{n}}} $/(N·mm?1) 0.116 $ \beta $ 3
$ {E_{\text{t}}} $/(N·mm?1) 0.116 $ {\lambda _{\text{n}}} $ 0.3
$ {\sigma _{{\text{max}}}} $/MPa 0.089 1 $ {\lambda _{\text{t}}} $ 0.3
$ {\tau _{{\text{max}}}} $/MPa 0.089 1 $ s $ 1.8
$ \alpha $ 3 $ {\mu _{\text{f}}} $ 0.364 1
表 2  改进内聚力模型下层间材料力学参数
图 4  直剪试验的数值模拟结果与试验结果对比
图 5  不同正向荷载下改进内聚力模型计算所得的剪切应力−位移曲线
图 6  不同正向荷载下直剪试验的数值模拟结果与试验结果对比
图 7  不同正向荷载下改进内聚力模型计算所得的切应力与剪切位移拟合关系
$ \sigma $/MPa $ x $/mm $ {E_{\text{t}}} $/J R2
0 3.356 11.6 0.999 7
0.2 3.348 32.9 0.999 5
0.4 3.361 43.9 0.999 8
0.6 3.346 46.3 0.998 0
0.8 3.342 63.7 0.998 6
1 3.337 81.6 0.998 4
表 3  沥青超薄罩面层间剪切破坏时临界断裂能
1 崔鹏, 李宇峙, 张莉, 等 采用便携式剪切仪研究超薄白色罩面的层间抗剪性能[J]. 中南公路工程, 2006, 31 (3): 34- 37
Cui Peng, Li Yu-zhi, Zhang Li, et al Research on shearing property at the intersection of ultra-thin whitetopping by utilizing portable shearing device[J]. Central South Highway Engineering, 2006, 31 (3): 34- 37
2 MOHAMMAD L N, RAQIB M, HUANG B Influence of asphalt tack coat materials on interface shear strength[J]. Transportation Research Record, 2002, 1789 (1): 56- 65
doi: 10.3141/1789-06
3 WEST R C, MOORE J R, ZHANG J. Evaluation tack coat applications and the bond Strengthen between pavements layers [C]// Proceeding of the 2006 Airfield and Highway Pavement Specialty Conference. Atlanta: [s. n.], 2006: 578-588.
4 毛昱. 沥青路面层间抗剪强度理论与试验研究[D]. 兰州: 兰州理工大学, 2018: 61-61.
MAO Yu. Interlayer shear strength theory and test of asphalt pavement [D]. Lanzhou: Lanzhou University of Technology, 2018.
5 李彦伟, 穆柯, 石鑫, 等 沥青路面基面层间结合状态的数值分析[J]. 天津大学学报, 2012, 45 (5): 461- 467
LI Yan-wei, MU Ke, SHI Xin, et al Numerical analysis on cohesion between base and surface courses of asphalt pavement[J]. Journal of Tianjin University, 2012, 45 (5): 461- 467
6 李彦伟, 穆柯, 石鑫, 等 基面层间接触状态对沥青路面力学响应影响[J]. 长安大学学报: 自然科学版, 2014, 34 (2): 38- 44
LI Yan-wei, MU Ke, SHI Xin, et al Impact of base-surface contact conditions on mechanical response of asphalt pavement[J]. Journal of Chang'an University: Natural Science Edition, 2014, 34 (2): 38- 44
7 马玉钦, 陈义, 许威, 等 基于HyperWorks的不同铺层方式复合材料剪切强度有限元分析[J]. 电子机械工程, 2020, 36 (6): 50- 53
MA Yu-qin, CHEN Yi, XU Wei, et al Finite element analysis of shear strength of composite with different laminate methods based on HyperWorks[J]. Electro-Mechanical Engineering, 2020, 36 (6): 50- 53
8 周秀丽 沥青和水泥混凝土复合桥面铺装在温度与荷载耦合作用下结构层间的剪应力分析研究[J]. 福建交通科技, 2020, (3): 144- 148
ZHOU Xiu-li Analysis of shear stress between layers of asphalt and cement concrete composite bridge deck pavement under coupling effect of temperature and load[J]. Fujian Transportation Science and Technology, 2020, (3): 144- 148
9 DUGDALE D S Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8 (2): 100- 104
doi: 10.1016/0022-5096(60)90013-2
10 BARENBLATT G I The mechanical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55- 129
11 WU CAI, LIMING DOU, YANG JU, et al A plastic strain-based damage model for heterogeneous coal using cohesion and dilation angle[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 151- 160
doi: 10.1016/j.ijrmms.2018.08.001
12 MEIER C, WEISSBACH R, WEINBERG J, et al Modeling and characterization of cohesion in fine metal powders with a focus on additive manufacturing process simulations[J]. Powder Technology, 2018, 343: 855- 866
13 TEIMOURI F, HEIDARI-RARANI M, ABOUTALEBI F H Finite element modeling of mode I fatigue delamination growth in composites under large-scale fiber bridging[J]. Composite Structures, 2021, 113716
14 NNIKOLAKOPOULOS K, CRÉTÉ J P, LONGÈRE P Progressive failure of ductile metals: description via a three-dimensional coupled CZM–XFEM based approach[J]. Engineering Fracture Mechanics, 2021, 243 (1): 107498
15 KARIMI M M, DEHAGHI E A, BEHNOOD A A fracture-based approach to characterize long-term performance of asphalt mixes under moisture and freeze-thaw conditions[J]. Engineering Fracture Mechanics, 2021, 241: 107418
doi: 10.1016/j.engfracmech.2020.107418
16 LING M, ZHANG J, FUENTES L, et al A mechanistic framework for tensile fatigue resistance of asphalt mixtures[J]. International Journal of Fatigue, 2021, 151 (6): 106345
17 GONG M, ZHANG H, WU J CZM analysis and evaluation of influencing factors on interlayer adhesion of asphalt mixture with double-layer continuous pave[J]. Construction and Building Materials, 2021, 302 (3): 124211
18 张敏江, 于江, 郭超 移动荷载下不同基面层间损伤状态的沥青路面力学响应分析[J]. 沈阳建筑大学学报: 自然科学版, 2021, 37 (2): 303- 313
ZHANG Min-jiang, YU Jiang, GUO Chao Investigation on mechanical response of asphalt pavement with different interlayer damage state under moving load[J]. Journal of Shenyang Jianzhu University: Natural Science, 2021, 37 (2): 303- 313
19 周晓和, 马大为, 朱忠领, 等 面基层间不同结合状态下发射场坪动态响应研究[J]. 兵工学报, 2015, 36 (12): 2269- 2277
ZHOU Xiao-he, MA Da-wei, ZHU Zhong-ling, et al Research on dynamic response of launching site based on different interlayer binding states[J]. Acta Armamentarii, 2015, 36 (12): 2269- 2277
20 黄宝涛, 廖公云, 张静芳 半刚性基层沥青路面层间接触临界状态值的计算方法[J]. 东南大学学报: 自然科学版, 2007, (4): 666- 670
HUANG Bao-tao, LIAO Gong-yun, ZHANG Jing-fang Analytical method of interlayer contact fettle in semi-rigid base bituminous pavement[J]. Journal of Southeast University : Natural Science Edition, 2007, (4): 666- 670
21 艾长发, 邱延峻, 毛成, 等 考虑层间状态的沥青路面温度与荷载耦合行为分析[J]. 土木工程学报, 2007, 40 (12): 99- 104
AI Chang-fa, QIU Yan-jun, MAO Cheng, et al Simulation of the temperature load coupling effect on asphalt pavement considering interlayer conditions[J]. China Civil Engineering Journal, 2007, 40 (12): 99- 104
22 郭寅川, 申爱琴, 张金荣, 等 沥青路面下封层力学响应及抗剪强度试验[J]. 中国公路学报, 2010, 23 (4): 20- 26
Guo Yan-chuan, SHEN Ai-qin, ZHANG Jin-rong, et al Shear strength test and mechanical response of lower seal coat for asphalt pavement[J]. China Journal of Highway and Transport, 2010, 23 (4): 20- 26
23 张东, 黄晓明, 赵永利 基于内聚力模型的沥青混合料劈裂试验模拟[J]. 东南大学学报: 自然科学版, 2010, 40 (6): 1276- 1281
ZHANG Dong, HUANG Xiao-ming, ZHAO Yong-li Simulation of indirect tension test of asphalt mixtures based on cohesive zone model[J]. Journal of Southeast University : Natural Science Edition, 2010, 40 (6): 1276- 1281
24 易成, 王长军, 刘晋艳, 等 两体接触面剪切力学行为的三维数值分析[J].  岩土力学, 2008, 29 (2): 2149- 2156
YI Cheng, WANG Chang-jun, LIU Jin-yan, et al 3D numerical analysis of shear mechanical behavior for interface between interactional bi-body[J]. Rock and Soil Mechanics, 2008, 29 (2): 2149- 2156
[1] 战友,李强,马啸天,王郴平,邱延峻. 基于宏微观纹理特征融合的路面摩擦性能预测[J]. 浙江大学学报(工学版), 2021, 55(4): 684-694.
[2] 张勤玲,黄志义. 高温高湿盐环境下SBS改性沥青胶浆的高温性能[J]. 浙江大学学报(工学版), 2021, 55(1): 38-45.
[3] 万晨光, 申爱琴, 郭寅川. 桥面铺装调平层与沥青面层层间剪切行为[J]. 浙江大学学报(工学版), 2017, 51(7): 1355-1360.
[4] 陈德, 韩森, 苏谦, 韩霄. 基于抗滑降噪性能的沥青路面表面构造评价指标[J]. 浙江大学学报(工学版), 2017, 51(5): 896-903.
[5] 黄志义, 胡晓宇, 王金昌, 章俊屾. 高黏沥青中高温感温性评价方法的适用性[J]. 浙江大学学报(工学版), 2015, 49(8): 1448-1454.
[6] 王新飞, 黄志义, 刘卓, 朱兴一, 徐伟. Delaunay三角网格的沥青混合料粗集料分布特性[J]. J4, 2012, 46(2): 263-268.