Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1772-1779    DOI: 10.3785/j.issn.1008-973X.2022.09.010
土木工程、交通工程     
轨道不平顺与轮轨匹配对地铁车辆晃动的影响
张斌(),关庆华*(),李伟,周亚波,温泽峰
西南交通大学 牵引动力国家重点实验室 四川 成都 610031
Influence of track irregularity and wheel-rail profile compatibility on metro vehicle sway
Bin ZHANG(),Qing-hua GUAN*(),Wei LI,Ya-bo ZHOU,Ze-feng WEN
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
 全文: PDF(1718 KB)   HTML
摘要:

为了综合分析轨道不平顺与轮轨匹配对地铁车辆晃动的影响机理,采用动力学试验与数值仿真相结合的方法展开研究. 测试车辆晃动的横向振动加速度、轮轨廓形及轨道不平顺,掌握车辆晃动、不同轮轨匹配特征,分析轨道不平顺及轮轨匹配对车辆晃动的影响. 结果表明:当地铁运行线路存在周期性轨道不平顺时,将严重影响车辆平稳性;不同轮轨型面匹配引起的转向架蛇行运动频率与轨道激励频率、车体滚摆模态频率的接近程度不同,是导致车辆平稳性存在差异的原因. 及时处理轨道周期性不平顺,合理控制轮轨型面匹配的等效锥度能够有效改善地铁车辆的运行品质.

关键词: 地铁车辆晃动轮轨匹配轨道不平顺耦合共振    
Abstract:

In order to comprehensively analyze the influence mechanism of track irregularity and wheel-rail profile compatibility on metro vehicle sway, a combination of dynamic test and numerical simulation was used to study. The lateral vibration acceleration of swaying vehicle, wheel-rail profile and track irregularity were tested. The characteristics of vehicle sway and differences in wheel-rail profile compatibility were revealed. The influence of track irregularity and wheel-rail profile compatibility on vehicle sway were analyzed. Results show that the ride quality will be seriously affected when there is periodic irregularity on the metro operation lines. The difference in the proximity of bogie hunting frequency due to wheel-rail profile compatibility, track excitation frequency and carbody sway modal frequency is the cause of the difference of vehicle ride quality. Measures should be taken in time to treat periodic irregularities on the lines. Meanwhile, reasonable control of the equivalent conicity of wheel-rail profile compatibility can effectively improve the running quality of metro vehicle.

Key words: metro vehicle    sway    wheel–rail profile compatibility    track irregularity    coupling resonance
收稿日期: 2021-10-18 出版日期: 2022-09-28
CLC:  U 270.1  
基金资助: 国家自然科学基金资助项目(51305360);广西科技计划项目(2020AC15009);牵引动力国家重点实验室自主研究课题(2020TPL-T02)
通讯作者: 关庆华     E-mail: 15191092547@163.com;guan_qh@163.com
作者简介: 张斌(1997—),男,硕士生,从事车辆系统动力学研究. orcid.org/0000-0002-0430-7304. E-mail: 15191092547@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张斌
关庆华
李伟
周亚波
温泽峰

引用本文:

张斌,关庆华,李伟,周亚波,温泽峰. 轨道不平顺与轮轨匹配对地铁车辆晃动的影响[J]. 浙江大学学报(工学版), 2022, 56(9): 1772-1779.

Bin ZHANG,Qing-hua GUAN,Wei LI,Ya-bo ZHOU,Ze-feng WEN. Influence of track irregularity and wheel-rail profile compatibility on metro vehicle sway. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1772-1779.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.010        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1772

图 1  车体振动加速度测点布置示意图
图 2  车体横向振动加速度特征分析
图 3  不同镟后里程车辆的横向平稳性指标
图 4  不同镟后里程的车轮廓形及磨耗分布
图 5  实测钢轨廓形和垂向偏差量
图 6  轮轨接触点对分布
图 7  不同轮轨匹配的等效锥度
图 8  地铁车辆动力学模型
参数 数值
轮对质量/t 1.007
构架质量/t 1.900
车体质量/t 17.529
一系纵向刚度/(MN·m?1) 5.00
一系横向刚度/(MN·m?1) 5.00
一系垂向刚度/(MN·m?1) 1.06
二系纵向刚度/(MN·m?1) 0.1625
二系横向刚度/(MN·m?1) 0.1625
二系垂向刚度/(MN·m?1) 0.4000
轴距/m 2
表 1  地铁车辆设计参数
图 9  车辆横向平稳性指标云图
图 10  转向架蛇行运动及车体悬挂模态的频率与阻尼比
图 11  不同等效锥度下的模态频率
图 12  不同激励工况下的横向平稳性指标
廓形 λ
标准钢轨廓形 实测钢轨廓形
车轮踏面1 0.030 0.025
车轮踏面2 0.105 0.130
车轮踏面3 0.493 0.729
表 2  不同轮轨匹配的等效锥度对比
廓形 Wy
标准钢轨廓形 实测钢轨廓形
车轮踏面1 1.95 2.03
车轮踏面2 3.29 3.31
车轮踏面3 2.83 2.95
表 3  不同轮轨匹配对应车辆横向平稳性指标计算结果对比
1 陈迪来, 沈钢, 宗聪聪 基于耦合度的铁道车辆平稳性分析[J]. 同济大学学报:自然科学版, 2018, 46 (1): 118- 124
CHEN Di-lai, SHEN Gang, ZONG Cong-cong Analysis of ride quality of railway vehicle based on coupling degree[J]. Journal of Tongji University: Natural Science, 2018, 46 (1): 118- 124
2 王少聪. B0-B0机车横向晃动现象研究 [D]. 成都: 西南交通大学, 2019: 38-53.
WANG Shao-cong. Research on low-frequency lateral sway of B0-B0 locomotive [D]. Chengdu: Southwest Jiaotong University, 2019: 38-53.
3 SUN J F, CHI M R, JIN X S, ea al Experimental and numerical study on carbody hunting of electric locomotive induced by low wheel–rail contact conicity[J]. Vehicle System Dynamics, 2021, 59 (2): 203- 223
doi: 10.1080/00423114.2019.1674344
4 孙永鹏, 罗世辉 SS9改进型电力机车横向晃动问题研究[J]. 机车电传动, 2006, 2: 14- 16, 22
SUN Yong-peng, LUO Shi-hui Study on lateral sway problem of SS9 modified electric locomotive[J]. Electric Drive for Locomotives, 2006, 2: 14- 16, 22
5 王开云, 孟宏 SS7E型电力机车横向晃动问题的理论分析[J]. 机车电传动, 2004, (6): 45- 48,51
WANG Kai-yun, MENG Hong Theoretical analysis on transverse shakiness of SS7E electric locomotive[J]. Electric Drive for Locomotives, 2004, (6): 45- 48,51
doi: 10.3969/j.issn.1000-128X.2004.06.014
6 孙善超, 王卫东, 刘金朝, 等 基于车辆系统稳定性分析的晃车现象研究[J]. 中国铁道科学, 2012, 33 (2): 82- 88
SUN Shan-chao, WANG Wei-dong, LIU Jin-chao, et al Study of carbody’s severe vibration based on stability analysis of vehicle system[J]. China Railway Science, 2012, 33 (2): 82- 88
doi: 10.3969/j.issn.1001-4632.2012.02.15
7 付政波 衡柳线动车组车体异常晃动问题研究[J]. 铁道机车车辆, 2019, 39 (2): 46- 49
FU Zheng-bo Research on the problem of abnormal shaking of EMU carbody on Hengliu line[J]. Railway Locomotive and Car, 2019, 39 (2): 46- 49
8 张金, 田常海, 刘丰收, 等 海南环岛高速的动车组晃车原因分析及整治措施[J]. 铁道建筑, 2019, 59 (4): 139- 143
ZHANG Jin, TIAN Chang-hai, LIU Feng-shou, et al Cause analysis and remedial measures of EMU shaking in Hainan Round Island high speed railway[J]. Railway Engineering, 2019, 59 (4): 139- 143
9 刘汗青. 地铁车辆车体横向抖动研究 [D]. 成都: 西南交通大学, 2015: 39-51.
LIU Han-qing. Study on transverse vibration of metro vehicle body [D]. Chengdu: Southwest Jiaotong University, 2015: 39-51.
10 刘永强. 轨道车辆车体晃动机理研究 [D]. 成都: 西南交通大学, 2019: 50-59.
LIU Yong-qiang. Research on mechanism of vehicle body sloshing [D]. Chengdu: Southwest Jiaotong University, 2019: 50-59.
11 厉鑫波, 周劲松, 夏张辉, 等 城际列车晃车机理试验研究[J]. 噪声与振动控制, 2019, 39 (6): 122- 126
LI Xin-bo, ZHOU Jin-song, XIA Zhang-hui, et al Test and analysis of car-body swing mechanism of intercity trains[J]. Noise and Vibration Control, 2019, 39 (6): 122- 126
doi: 10.3969/j.issn.1006-1355.2019.06.022
12 叶一鸣, 贡照华 机车晃车原因分析及其预防[J]. 铁道学报, 2003, 25 (1): 113- 117
YE Yi-ming, GONG Zhao-hua Analysis of the cause and prevention for the swing of locomotive[J]. Journal of the China Railway Society, 2003, 25 (1): 113- 117
13 陈经纬, 崔涛, 孙建锋, 等 基于高速列车异常晃动的钢轨廓形打磨管理[J]. 机车电传动, 2020, 276 (5): 128- 131
CHEN Jing-wei, CUI Tao, SUN Jian-feng, et al Grinding management of rail profile based on abnormal hunting of high-speed train[J]. Electric Drive for Locomotives, 2020, 276 (5): 128- 131
14 俞喆, 杨光, 王有能, 等 钢轨廓形对动车组车体低频横向晃动影响研究[J]. 铁道工程学报, 2020, 37 (7): 23- 28
YU Zhe, YANG Guang, WANG You-neng, et al Research on the influence of rail profile on low frequency lateral sway of EMUs[J]. Journal of Railway Engineering Society, 2020, 37 (7): 23- 28
15 池茂儒, 蔡吴斌, 梁树林, 等 高速铁路钢轨打磨偏差对车辆动力学性能的影响[J]. 中国机械工程, 2019, 30 (3): 261- 265
CHI Mao-ru, CAI Wu-bin, LIANG Shu-lin, et al Influences of rail grinding deviations on vehicle dynamics performances of high speed railways[J]. China Mechanical Engineering, 2019, 30 (3): 261- 265
doi: 10.3969/j.issn.1004-132X.2019.03.002
16 张志超, 李谷, 杜瑞涛, 等 动力集中动车组直线运行晃车问题研究[J]. 铁道机车车辆, 2020, 40 (3): 1- 6
ZHANG Zhi-chao, LI Gu, DU Rui-tao, et al Research on transverse vibration problem for the power car of power concentrated EMU[J]. Railway Locomotive and Car, 2020, 40 (3): 1- 6
17 孟葳 动车组车体蛇行失稳机理与影响因素试验研究[J]. 铁道机车车辆, 2021, 41 (2): 28- 32
MENG Wei Experimental study on mechanism and influencing factors of carbody instability in EMU train[J]. Railway Locomotive and Car, 2021, 41 (2): 28- 32
18 夏张辉, 周劲松, 宫岛, 等 基于模态连续追踪的铁道车辆车体低频横向晃动现象研究[J]. 铁道学报, 2018, 40 (12): 46- 54
XIA Zhang-hui, ZHOU Jin-song, GONG Dao, et al Research on low–frequency lateral sway of railway vehicle body based on modal continuous tracking[J]. Journal of the China Railway Society, 2018, 40 (12): 46- 54
doi: 10.3969/j.issn.1001-8360.2018.12.007
19 何旭升, 吴会超, 高峰 高速动车组晃车机理试验研究[J]. 大连交通大学学报, 2017, 38 (1): 21- 25
HE Xu-sheng, WU Hui-chao, GAO Feng Test study on carbody swing of high–speed EMUs[J]. Journal of Dalian Jiaotong University, 2017, 38 (1): 21- 25
20 黄彩虹, 梁树林, 宋春元, 等 高速车辆车体低频横向晃动的影响因素研究[J]. 机车电传动, 2014, 20 (1): 16
HUANG Cai-hong, LIANG Shu-lin, SONG Chun-yuan, et al Study on influence factors of low–frequency carbody swaying for high–speed vehicles[J]. Electric Drive for Locomotives, 2014, 20 (1): 16
21 HUANG Cai-hong, ZENG Jing, LIANG Shu-lin Carbody hunting investigation of a high speed passenger car[J]. Journal of Mechanical Science and Technology, 2013, 27 (8): 2283- 2292
doi: 10.1007/s12206-013-0611-z
22 李然, 罗仁 低轮轨摩擦因数对高速列车横向运动稳定性影响[J]. 机械工程与自动化, 2017, (1): 20- 21
LI Ran, LUO Ren Influence of low wheel/rail friction coefficient on lateral movement stability of high speed train[J]. Mechanical Engineering and Automation, 2017, (1): 20- 21
doi: 10.3969/j.issn.1672-6413.2017.01.008
23 WEI L, ZENG J, CHI M R, et al Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability[J]. Vehicle System Dynamics, 2017, 55 (9): 1321- 1342
doi: 10.1080/00423114.2017.1310386
24 国家铁路局. 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019 [S]. 北京: 中国标准出版社, 2019.
25 许世杰, 关庆华, 张雄飞, 等 地铁车辆车轮踏面双光带形成机理分析[J]. 机械工程学报, 2021, 57 (18): 240- 251
XU Shi-jie, GUAN Qing-hua, ZHANG Xiong-fei, et al Analysis on the formation mechanism of the contact strips on the wheel tread of metro vehicle[J]. Journal of Mechanical Engineering, 2021, 57 (18): 240- 251
26 方静赛. 铁道车辆转向架与车体振动同步研究 [D]. 成都: 西南交通大学, 2015: 32-48.
FANG Jing-sai. Study on the vibration synchronization of the rolling stock bogie and carbody [D]. Chengdu: Southwest Jiaotong University, 2015: 32-48.
27 池茂儒, 张卫华, 曾京, 等 蛇行运动对铁道车辆平稳性的影响[J]. 振动工程学报, 2008, 21 (6): 639- 643
CHI Mao-ru, ZHANG Wei-hua, ZENG Jing, et al Influence of hunting motion on ride quality of railway vehicle[J]. Journal of Vibration Engineering, 2008, 21 (6): 639- 643
[1] 张捷, 肖新标, 王瑞乾, 金学松. 高速列车铝型材声振特性测试及等效建模[J]. 浙江大学学报(工学版), 2017, 51(3): 545-553.