Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2186-2193    DOI: 10.3785/j.issn.1008-973X.2021.11.020
土木与建筑工程     
风环境视野下基于AI的高层住宅总图生成方法
应小宇1,2(),秦小颖1,陈佳卉1,高婧1,刘紫乔1
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙大城市学院 工程学院,浙江 杭州 310015
Layout generation method of high-rise residential buildings based on AI in view of wind environment
Xiao-yu YING1,2(),Xiao-ying QIN1,Jia-hui CHEN1,Jing GAO1,Zi-qiao LIU1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. School of Engineering, Zhejiang University City College, Hangzhou 310015, China
 全文: PDF(1216 KB)   HTML
摘要:

针对高层居住区布局的自动生成方法和风速预测技术进行研究,设计主要用于住宅布局自动生成、风环境性能模拟与对比寻优的方法. 根据中国长三角地区居住区数据提取和建筑法规,提出遗传算法的适应度函数和优化目标,建立建筑布局自动生成算法;利用全卷积神经网络 (FCN) 的图像学习特点,构建基于全卷积神经网络的计算流体动力学 (CFD) 代理模型,得到优化布局的风速分布特征. 实验结果表明,所提出方法的误差在有效范围内. 此外,相比传统风环境模拟软件Phoenics,所提出方法能显著降低风环境模拟耗时,并有效避免建筑师个人经验的局限性问题. 该方法可以自动学习方案排布,快速得出特定容积率与地块条件下高层住宅布局的最优解法,为当今快节奏的建筑设计提供人居环境性能方面的指导.

关键词: 人工智能室外风环境高层住宅区总图布局软件开发    
Abstract:

The automatic generation method and wind speed prediction technology of high-rise residential layout were studied, and the method of automatic generation, wind environment simulation and comparative optimization for high-rise residential area was developed. The fitness function and optimization goal of genetic algorithm were proposed, and the automatic generation algorithm of building layout was established, according to the data extraction of residential area and building regulations in Yangtze River Delta region of China. A computational fluid dynamics (CFD) proxy model based on fully convolutional neural networks (FCN) was constructed to obtain the wind speed distribution characteristics of optimal layout, based on the image learning characteristics of FCN. The optimization effect and wind environment prediction effect were analyzed, and results showed that the the error of the proposed method was within the effective range. In addition, compared with Phoenics, the proposed method can significantly reduce the wind environment simulation time, and effectively avoid the limitations of architects’ personal experience. This method can automatically learn scheme arrangement, quickly get the optimal solution of high-rise residential layout under specific plot ratio and plot conditions, and provide guidance for the performance of living environment in today’s fast-paced architectural design.

Key words: artificial intelligence    outdoor wind environment    high-rise residential area    general layout    software development
收稿日期: 2020-10-13 出版日期: 2021-11-05
CLC:  TU 241  
基金资助: 国家自然科学基金资助项目(51878608);浙江省自然科学基金资助项目(LY18E080025)
作者简介: 应小宇(1980—),男,教授,从事绿色建筑设计研究. orcid.org/0000-0001-5317-255X. E-mail: yingxiaoyu@zucc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
应小宇
秦小颖
陈佳卉
高婧
刘紫乔

引用本文:

应小宇,秦小颖,陈佳卉,高婧,刘紫乔. 风环境视野下基于AI的高层住宅总图生成方法[J]. 浙江大学学报(工学版), 2021, 55(11): 2186-2193.

Xiao-yu YING,Xiao-ying QIN,Jia-hui CHEN,Jing GAO,Zi-qiao LIU. Layout generation method of high-rise residential buildings based on AI in view of wind environment. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2186-2193.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.020        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2186

图 1  风环境视野下基于AI的高层住宅总图生成方法流程图
图 2  所采用的长三角地区样本住宅区平面图
建筑类型 编号 平面尺寸/m 层数
板式住宅 B1 60×15 11
B2 40×15 18
B3 60×15 18
B4 40×15 30
B5 60×15 30
点式住宅 P1 20×15 11
P2 20×15 18
P3 20×15 30
表 1  建筑选型表
图 3  点板混合式高层居住区组团划分方案
平面尺寸 层数 南北间距/m 东西间距/m
40 m×15 m 18 33.0 13.0
30 40.0 13.0
60 m×15 m 11 44.0 13.0
18 48.0 13.0
30 63.0 13.0
20 m×15 m 11 16.3 13.0
18 17.0 13.0
30 17.0 13.0
表 2  各类建筑的间距表
图 4  预测模型的风速测点分布图
建筑类型 建筑编号 单位长/格 单位宽/格 高度/m
板式住宅 B1 12 3 33
B2 8 3 54
B3 12 3 54
B4 8 3 90
B5 12 3 90
点式住宅 P1 4 3 33
P2 4 3 54
P3 4 3 90
表 3  矩阵表示法下的住宅建筑尺寸参数表
图 5  矩阵表示的某方案建筑布局图
图 6  矩阵表示的某方案风速分布图
图 7  基于FCN的CFD代理模型网络结构
图 8  高层住宅布局生成软件设置界面
图 9  运算后的高层住宅布局生成软件界面
风向 建筑类型 建筑编号 数量
北风 板式住宅 B1 0
B2 6
B3 7
B4 0
B5 0
点式住宅 P1 0
P2 6
P3 6
表 4  实验所用的建筑参数表
图 10  优化前样本模型的布局图
图 11  经遗传算法优化后样本模型的布局图
图 12  模型训练过程中的均方误差变化趋势
1 李若尧, 基于风环境质量的城市住区更新潜力分析[D]. 南京: 南京大学, 2018.
LI Ruo-yao. Urban residential area renewal potential analysis on wind environmental quality[D]. Nanjing: Nanjing University, 2018.
2 LITTLEFAIR P J, SANTAMOURIS M, ALVAREZ S. Environmental site layout planning: solar access, microclimate and passive cooling in urban areas[M]. London: BRE Publications, 2000.
3 应小宇, 阚琪, 任昕 风环境视野下高层建筑群朝向: 以杭州钱江新城四季青路地块为例[J]. 西安建筑科技大学学报:自然科学版, 2018, 50 (6): 884- 889
YING Xiao-yu, KAN Qi, REN Xin Design analysis of high-rise buildings in the view of wind environment: a case study of four seasons green block in Hangzhou Qianjiang new city[J]. Journal of Xi’an University of Architecture and Technology: Natural Science Edition, 2018, 50 (6): 884- 889
4 周莉, 席光 高层建筑群风场的数值分析[J]. 西安交通大学学报, 2001, 35 (5): 471- 474
ZHOU Li, XI Guang Numerical analysis of wind field in high-rise buildings[J]. Journal of Xi'an Jiaotong University, 2001, 35 (5): 471- 474
doi: 10.3321/j.issn:0253-987X.2001.05.008
5 单琪雅. 严寒地区住区高层建筑布局形态对风环境的影响[D]. 哈尔滨: 哈尔滨工业大学, 2016.
SHAN Qi-ya. The influence of residential high-rise building layout on wind environment in cold region[D]. Harbin: Harbin Institute of Technology, 2016.
6 杨丽. 绿色建筑设计: 建筑风环境[M]. 上海: 同济大学出版社, 2014.
7 杨丽, 宋德萱 居住区规划中建筑平面空间组合与风环境的关系研究[J]. 住宅科技, 2013, 33 (2): 1- 6
YANG Li, Song De-xuan The study on the relation between spatial combination of building plane and wind environment in residential district planning[J]. Housing Technology, 2013, 33 (2): 1- 6
doi: 10.3969/j.issn.1002-0454.2013.02.001
8 张圣武. 基于数值模拟的杭州住区风环境分析研究[D]. 杭州: 浙江大学, 2016.
ZHANG Sheng-wu. Research on wind environment of residential districts in Hangzhou based on numerical simulation[D]. Hangzhou: Zhejiang University, 2016.
9 HANG J, LI Y, SANDBERG M Experimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategy[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99 (10): 1036- 1055
doi: 10.1016/j.jweia.2011.07.004
10 王美琪. 基于户外空间优化的中高强度住区规划布局研究[D]. 南京: 东南大学, 2018.
WANG Mei-qi. Research on the planning and layout of middle and high intensity residential areas based on optimization of outdoor space[D]. Nanjing: Southeast University, 2018.
11 王巧雯, 汪磊磊 基于室外风环境CFD模拟的住宅小区设计策略[J]. 新建筑, 2018, 5: 69- 71
WANG Qiao-wen, WANG Lei-lei Design strategy of residential quarters based on CFD simulation of outdoor wind environment[J]. New Architecture, 2018, 5: 69- 71
doi: 10.12069/j.na.201802013
12 李梦雯, 南京居住区建筑群体空间形态对风环境的影响研究[D]. 南京: 东南大学, 2016.
LI Meng-wen. The study on effect of architecture apace form on wind environment in Nanjing residential districts[D]. Nanjing: Southeast University, 2016.
13 余波. 基于室外风环境优化的厦门地区高层住区布局模式初探[D]. 厦门: 厦门大学, 2017.
YU Bo. Preliminary study on high-rise residential layout patterns based on wind environment optimization in Xiamen[D]. Xiamen: Xiamen University, 2017.
14 刘宇鹏, 虞刚 基于遗传算法的形态与微气候环境性能自动优化方法[J]. 中外建筑, 2018, (6): 71- 74
LIU Yu-peng, YU Gang The automatic optimizing method of morphology and microclimate environmental performance based on genetic algorithm[J]. Chinese and Foreign Architecture, 2018, (6): 71- 74
15 刘宇鹏. 基于微气候性能驱动的寒地城市形态自动优化方法研究[D]. 南京: 东南大学, 2018.
LIU Yu-peng. The automatic optimizing method of the urban forms in cold regions based on micro-climate environments performance-driven[D]. Nanjing: Southeast University, 2018.
16 刘斅聪. 风寒性能导向下的寒地建筑室外风环境多目标优化设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
LIU Yin-cong. Research on multi-objective optimization of outdoor wind environment of buildings in cold region driven by wind chill performance[D]. Harbin: Harbin Institute of Technology, 2020.
17 中华人民共和国住房和城乡建设部. 建筑设计防火规范: GB 50016—2018 [S]. 北京: 中国计划出版社, 2018.
18 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.
19 孙澄, 曲大刚, 黄茜 人工智能与建筑师的协同方案创作模式研究: 以建筑形态的智能化设计为例[J]. 建筑学报, 2020, 2: 74- 78
SUN Cheng, QU Da-gang, HUANG Qian Towards AI-architect interactive and collaborative architectural design: a case study of intelligent stylization of building shape[J]. Architecture Journal, 2020, 2: 74- 78
20 STATHOPOULOS T, BASKARAN A Computer simulation of wind environment conditions around buildings[J]. Engineering Structures, 1996, 18 (11): 876- 885
doi: 10.1016/0141-0296(95)00155-7
21 席睿. 基于合理静风区面积比的居住区布局研究[D]. 重庆: 重庆大学, 2017.
XI Rui. Study on residential area layout based on reasonable silent areas[D]. Chongqing: Chongqing University, 2017.
[1] 康庄,杨杰,郭濠奇. 基于机器视觉的垃圾自动分类系统设计[J]. 浙江大学学报(工学版), 2020, 54(7): 1272-1280.
[2] 王慧芳,张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报(工学版), 2020, 54(3): 606-613.
[3] 方敏 应晶 吴明晖 蒋涛. 基于模板工程的软件开发自动化框架研究[J]. J4, 2007, 41(3): 396-401.
[4] 代建华 陈卫东 潘云鹤. 单源综合推理的研究[J]. J4, 2006, 40(11): 1966-1971.
[5] 李威武 王慧 钱积新. 智能交通系统中路径诱导算法研究进展[J]. J4, 2005, 39(6): 819-825.