Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 213-220    DOI: 10.3785/j.issn.1008-973X.2020.02.001
土木与交通工程     
基于子集模拟的非线性相邻结构地震碰撞易损性及风险评估方法
刘佩(),朱海鑫,杨维国
北京交通大学 土木建筑工程学院,北京 100044
Seismic pounding fragility and risk assessment method for nonlinear adjacent structures based on subset simulation
Pei LIU(),Hai-xin ZHU,Wei-guo YANG
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044
 全文: PDF(1356 KB)   HTML
摘要:

鉴于利用线性相邻结构的相对位移峰值估计避免地震碰撞的最小结构间距的方法安全水平未知,提出基于性能的概率方法用于评估非线性相邻结构发生地震碰撞的风险. 利用高效计算小失效概率的子集模拟法对地震碰撞易损性进行计算;以动力特性差异显著的等高多自由度相邻结构为例,研究不同结构间距下考虑非线性与否的相邻结构地震碰撞易损性与风险的规律;将所提方法用于评估结构间连接减轻相邻结构地震碰撞概率的效果. 结果表明,非线性相邻结构的地震碰撞概率随地面峰值加速度的增加整体呈增大趋势,但存在局部波动;结构间距越大,考虑非线性与否所得的地震碰撞概率差别越大;当结构间距较大时,为了保证减撞效果,结构间连接刚度须足够大.

关键词: 相邻结构地震碰撞失效概率易损性风险    
Abstract:

Existing procedures to determine a minimum separation distance needed to avoid seismic pounding are based on approximations of the peak relative horizontal displacement between linear adjacent buildings, and are characterized by unknown safety levels. Thus, a performance-based probabilistic procedure for assessing risk of seismic pounding between nonlinear adjacent buildings was proposed. An efficient small failure probability method, i.e. subset simulation, was used for calculating the seismic pounding fragility of adjacent buildings. The multi-degree-of-freedom systems of equal height with substantially different dynamic properties were taken as examples to assess the rules of seismic pounding fragility and risk with and without considering nonlinear behavior of adjacent buildings at different separation distances. Moreover, the proposed method was employed to assess the performance of link elements connecting the adjacent structures, which aimed at decreasing the pounding probability. Results show that with the increase of peak ground acceleration, the seismic pounding fragility curves with considering nonlinear behavior of adjacent buildings are generally monotonic and non-decreasing but have local variations. The difference between the seismic pounding probabilities of adjacent structures with and without considering nonlinear behavior becomes larger with the increase of separation distance. When the separation distance is large, the stiffness of linking between the adjacent structures should be large enough to achieve the goal of pounding mitigation.

Key words: adjacent structure    seismic pounding    failure probability    fragility    risk
收稿日期: 2019-06-02 出版日期: 2020-03-10
CLC:  TU 311  
基金资助: 中央高校基本科研业务费专项资金资助项目(2019JBM085)
作者简介: 刘佩(1982—),女,副教授,博士,从事地震易损性研究. orcid.org/0000-0002-9973-7699. E-mail: peiliu@bjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘佩
朱海鑫
杨维国

引用本文:

刘佩,朱海鑫,杨维国. 基于子集模拟的非线性相邻结构地震碰撞易损性及风险评估方法[J]. 浙江大学学报(工学版), 2020, 54(2): 213-220.

Pei LIU,Hai-xin ZHU,Wei-guo YANG. Seismic pounding fragility and risk assessment method for nonlinear adjacent structures based on subset simulation. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 213-220.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.001        http://www.zjujournals.com/eng/CN/Y2020/V54/I2/213

图 1  地震碰撞易损性曲线
图 2  相邻结构模型
图 3  非线性相邻结构不发生碰撞时第3层的位移响应
图 4  不同间距下相邻结构地震碰撞易损性曲线
图 5  考虑与不考虑非线性的相邻结构地震碰撞易损性曲线对比
算法 PGA
0.12g 0.14g 0.20g 0.40g 0.60g
子集模拟法 0.005 0 0.020 0 0.340 0 0.865 0 0.920 0
蒙特卡罗法 0.004 8 0.021 0 0.340 0 0.865 0 0.920 0
表 1  结构间距为0.10 m时非线性相邻结构的失效概率对比
图 6  年均地震碰撞概率
图 7  设计使用年限内地震碰撞风险
图 8  弹簧单元连接的相邻结构模型
图 9  不同连接刚度下相邻结构的峰值相对位移
图 10  不同连接刚度的相邻结构地震碰撞易损性
1 COLE G L, DHAKAL R P, TURNER F M Building pounding damage observed in the 2011 Christchurch earthquake[J]. Earthquake Engineering and Structural Dynamics, 2012, 41 (5): 893- 913
doi: 10.1002/eqe.1164
2 BARBOSA A R, FAHNESTOCK L A, FICK D R, et al Performance of medium-to-high rise reinforced concrete frame buildings with masonry infill in the 2015 Gorkha, Nepal, Earthquake[J]. Earthquake Spectra, 2017, 33 (Suppl.1): 197- 218
3 杨永强, 戴君武, 公茂盛, 等 芦山地震中相邻建筑碰撞破坏调查与分析[J]. 哈尔滨工业大学学报, 2015, 47 (12): 102- 105
YANG Yong-qiang, DAI Jun-wu, GONG Mao-sheng, et al Investigation and analysis on adjacent buildings pounding damage in Lushan Earthquake[J]. Journal of Harbin Institute of Technology, 2015, 47 (12): 102- 105
doi: 10.11918/j.issn.0367-6234.2015.12.018
4 张泾钰 建筑物的变形缝在汶川地震中的反应及对策思考[J]. 西华大学学报:自然科学版, 2009, 28 (4): 83- 85
ZHANG Jing-yu Reflections on counter measures and responses of joints of structures in Wenchuan Earthquake[J]. Journal of Xihua University: Natural Science, 2009, 28 (4): 83- 85
5 JANKOWSKI R, MAHMOUD S. Earthquake-induced structural pounding [M]. Switzerland: Springer, 2015.
6 YU Z W, LIU H Y, GUO W, et al A general spectral difference method for calculating the minimum safety distance to avoid the pounding of adjacent structures during earthquakes[J]. Engineering Structures, 2017, 150: 646- 655
doi: 10.1016/j.engstruct.2017.07.068
7 RAHEEM S E A, FOOLY M Y M, SHAFY A G A, et al Numerical simulation of potential seismic pounding among adjacent buildings in series[J]. Bulletin of Earthquake Engineering, 2019, 17: 439- 471
doi: 10.1007/s10518-018-0455-0
8 LOPEZ-GARCIA D, SOONG T T Assessment of the separation necessary to prevent seismic pounding between linear structural systems[J]. Probabilistic Engineering Mechanics, 2009, 24: 210- 223
doi: 10.1016/j.probengmech.2008.06.002
9 BARBATO M, TUBALDI E A probabilistic performance-based approach for mitigating the seismic pounding risk between adjacent buildings[J]. Earthquake Engineering and Structural Dynamics, 2013, 42: 1203- 1219
doi: 10.1002/eqe.2267
10 LIN J H Separation distance to avoid seismic pounding of adjacent buildings[J]. Earthquake Engineering and Structural Dynamics, 1997, 26: 395- 403
doi: 10.1002/(SICI)1096-9845(199703)26:3<395::AID-EQE655>3.0.CO;2-F
11 贾宏宇, 杜修力, 李兰平, 等 地震作用下梁体碰撞间隙宽度的概率分析方法[J]. 工程力学, 2018, 35 (8): 39- 45
JIA Hong-yu, DU Xiu-li, LI Lan-ping, et al Probability analysis of pounding separation distance of bridges subjected to earthquake excitations[J]. Engineering Mechanics, 2018, 35 (8): 39- 45
doi: 10.6052/j.issn.1000-4750.2017.03.0263
12 贾宏宇, 杜修力, 罗楠 随机地震激励下高墩桥梁碰撞可靠度分析[J]. 西南交通大学学报, 2018, 53 (1): 88- 94
JIA Hong-yu, DU Xiu-li, LUO Nan Dynamic reliability analysis on pounding of high-pier bridges subjected to stochastics seismic excitations[J]. Journal of Southwest Jiaotong University, 2018, 53 (1): 88- 94
doi: 10.3969/j.issn.0258-2724.2018.01.011
13 TUBALDI E, BARBATO M, GHAZIZADEH S A probabilistic performance-based risk assessment approach for seismic pounding with efficient application to linear systems[J]. Structural Safety, 2012, 36/37: 14- 22
doi: 10.1016/j.strusafe.2012.01.002
14 TUBALDI E, FREDDI F, BARBATO M Probabilistic seismic demand model for pounding risk assessment[J]. Earthquake Engineering and Structural Dynamics, 2016, 45: 1743- 1758
doi: 10.1002/eqe.2725
15 WU Q Y, ZHU H P, CHEN X Y Seismic fragility analysis of adjacent inelastic structures connected with viscous fluid dampers[J]. Advances in Structural Engineering, 2017, 20 (1): 18- 33
doi: 10.1177/1369433216646000
16 TAKABATAKE H, YASUI M, NAKAGAWA Y, et al Relaxation method for pounding action between adjacent buildings at expansion joint[J]. Earthquake Engineering and Structural Dynamics, 2014, 43: 1381- 1400
doi: 10.1002/eqe.2402
17 MIARI M, CHOONG K K, JANKOWSKI R Seismic pounding between adjacent buildings: identification of parameters, soil interaction issues and mitigation measures[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 135- 150
doi: 10.1016/j.soildyn.2019.02.024
18 AU S K, BECK J L Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16: 263- 277
doi: 10.1016/S0266-8920(01)00019-4
19 SHINOZYKA M, DEODATIS G Simulation of stochastic processes by spectral representation[J]. Applied Mechanic Reviews, 1991, 44 (4): 191- 204
doi: 10.1115/1.3119501
[1] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
[2] 曾煌尧,李丹丹,马严,丛群. 园区网风险账号评估方法[J]. 浙江大学学报(工学版), 2020, 54(9): 1761-1767.
[3] 杨琳,王嘉君. 基于复杂网络模型的城市综合管廊PPP项目风险传递过程研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1666-1676.
[4] 赵旭东,陈志龙,许继恒,唐海洲. 地震灾害下城市双层关联生命线网络易损性[J]. 浙江大学学报(工学版), 2020, 54(4): 767-777.
[5] 黄博,廖凯龙,赵宇,蒋建群. 考虑河谷地形影响的多层框架结构地震易损性[J]. 浙江大学学报(工学版), 2019, 53(4): 692-701.
[6] 隋昊,覃高峰,崔祥波,陆新江. 基于误差均值与方差最小化的鲁棒T-S模糊建模方法[J]. 浙江大学学报(工学版), 2019, 53(2): 382-387.
[7] 王睿, 李延来, 朱江洪, 杨艺. 考虑专家共识的改进FMEA风险评估方法[J]. 浙江大学学报(工学版), 2018, 52(6): 1058-1067.
[8] 周健, 石德晓. 基于中断应急的集成弹性供应链网络[J]. 浙江大学学报(工学版), 2018, 52(2): 240-246.
[9] 丁智, 张霄, 周联英, 陈自海. 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报(工学版), 2018, 52(10): 1943-1953.
[10] 张心怡, 杨家强, 张晓军. 基于机会约束的含多风电场动态经济调度[J]. 浙江大学学报(工学版), 2017, 51(5): 976-983.
[11] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[12] 贾驰千, 冯冬芹. 基于模糊层次分析法的工控系统安全评估[J]. 浙江大学学报(工学版), 2016, 50(4): 759-765.
[13] 梁耀,冯冬芹. 基于攻击增益的工业控制系统物理层安全风险评估[J]. 浙江大学学报(工学版), 2016, 50(3): 589-.
[14] 秦旋,卓光杰,莫懿懿. 考虑脆弱性的复杂绿色建筑项目风险路径[J]. 浙江大学学报(工学版), 2016, 50(11): 2177-2187.
[15] 居斌, 钱沄涛, 叶敏超. 基于结构投影非负矩阵分解的协同过滤算法[J]. 浙江大学学报(工学版), 2015, 49(7): 1319-1325.