Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (4): 767-777    DOI: 10.3785/j.issn.1008-973X.2020.04.016
土木工程、交通工程     
地震灾害下城市双层关联生命线网络易损性
赵旭东(),陈志龙*(),许继恒,唐海洲
陆军工程大学 爆炸冲击防灾减灾国家重点实验室,江苏 南京 210007
Seismic vulnerability of urban double-layer interdependent lifeline network
Xu-dong ZHAO(),Zhi-long CHEN*(),Ji-heng XU,Hai-zhou TANG
State Key Laboratory of Explosion and Impact and Disaster Prevention and Mitigation, Army Engineering University, Nanjing 210007, China
 全文: PDF(1161 KB)   HTML
摘要:

以双层关联生命线网络为对象,建立生命线网络性能概率易损性仿真模型和关联单元震害和级联失效联合概率方法,形成地震灾害下双层关联生命线网络易损性研究框架,开展地震灾害下城市双层关联生命线网络性能的概率易损性分析. 在以华东某市电力和燃气关联网络为例的案例研究中,依据研究框架构建仿真流程,得到场景地震下双层关联生命线网络性能的概率易损性曲线. 结果显示,场景地震下,案例电力网络发生中度性能损失的概率较大,燃气网络发生重度性能损失的概率较大,燃气网络性能重度损失的概率随着关联强度的增强而明显增大. 电力网络和燃气网络均在单元抗震和网络布局上存在薄弱点,是2个网络发生性能损失的重要原因,应在后续规划中改进.

关键词: 地震生命线易损性关联级联失效    
Abstract:

Probabilistic vulnerability simulation model of network performance and joint probability method of seismic failure and cascading failure of interdependent units were established focusing on the double-layer interdependent lifeline networks. Then a research framework was proposed to analyze the seismic vulnerability of double-layer interdependent lifeline networks. Then probabilistic vulnerability analysis of the performance of urban double-layer interdependent lifeline networks was conducted. A simulation procedure was constructed according to the framework to obtain the probabilistic vulnerability curves of double-layer interdependent lifeline networks under scenario earthquake in the case study of interdependent power-gas supply networks in a city of east China. Results show that power supply network is more likely to suffer medium performance loss under scenario earthquake, while gas supply network is more likely to suffer severe performance loss. The probability of severe performance loss of gas supply network apparently increases with the interdependence intension. The power supply network and gas supply network both have weaknesses in unit seismic fortification and network structure. These shortages are the main reasons of performance loss and should be well settled in the future municipal planning.

Key words: earthquake    lifeline    vulnerability    interdependence    cascading failure
收稿日期: 2019-03-25 出版日期: 2020-04-05
CLC:  TU 982  
基金资助: 国家自然科学基金青年基金资助项目(51708554);江苏省自然科学基金面上项目(BK20181336)
通讯作者: 陈志龙     E-mail: wxlmss@163.com;chen-zl@vip.163.com
作者简介: 赵旭东(1989—),男,讲师,从事城市生命线防灾及战时防护研究. orcid.org/0000-0001-6667-4946. E-mail: wxlmss@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵旭东
陈志龙
许继恒
唐海洲

引用本文:

赵旭东,陈志龙,许继恒,唐海洲. 地震灾害下城市双层关联生命线网络易损性[J]. 浙江大学学报(工学版), 2020, 54(4): 767-777.

Xu-dong ZHAO,Zhi-long CHEN,Ji-heng XU,Hai-zhou TANG. Seismic vulnerability of urban double-layer interdependent lifeline network. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 767-777.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.04.016        http://www.zjujournals.com/eng/CN/Y2020/V54/I4/767

图 1  生命线网络性能概率易损性模型方法
图 2  地震灾害下双层生命线网络易损性研究框架
图 3  案例城市电力供应网络拓扑结构示意图
图 4  案例城市燃气供应网络拓扑结构示意图
燃气源点 节点类型 关联电力节点 节点类型
32 分输站 3 中低压变电站
44 储配站 11 中低压变电站
46 分输站 12 中低压变电站
55 储配站 22 中低压变电站
61 分输站 21 中低压变电站
表 1  案例双层生命线网络关联关系
图 5  双层关联生命线网络易损性分析仿真流程
图 6  地震灾害下电力供应网络性能概率易损性曲线
网络性能损失程度 SL P
轻微(Slight) 0%<SL≤25% 0.110
轻度(Moderate) 25%<SL≤50% 0.315
中度(Medium) 50%<SL≤75% 0.400
重度(Extensive) 75%<SL≤100% 0.175
表 2  案例地震场景下电力供应网络不同性能损失程度发生概率
图 7  案例地震场景下燃气供应网络性能概率易损性曲线(不同关联强度αij下)
图 8  案例地震场景下燃气网络性能不同损失程度发生概率(不同关联强度αij下)
1 MOTEFF J, COPELAND C, FISCHER J. Critical infrastructures: what makes an infrastructure critical [R]. Washington DC: Congressional Research Service, 2002.
2 ZHAO B, TAUCER F Performance of infrastructure during the May 12, 2008 Wenchuan earthquake in China[J]. Journal of Earthquake Engineering, 2010, 14 (4): 578- 600
doi: 10.1080/13632460903274053
3 KOBAYASHI M Experience of infrastructure damage caused by the great east Japan earthquake and countermeasures against future disasters[J]. IEEE Communications Magazine, 2014, 52 (3): 23- 29
doi: 10.1109/MCOM.2014.6766080
4 YEH H, SATO S, TAJIMA Y The 11 March 2011 east Japan earthquake and tsunami: tsunami effects on coastal infrastructure and buildings[J]. Pure and Applied Geophysics, 2013, 170 (6–8): 1019- 1031
5 SINGH S K, REINOSO E, ARROYO D Deadly intraslab Mexico earthquake of 19 September 2017(M-w 7.1): ground motion and damage pattern in Mexico City[J]. Seismological Research Letters, 2018, 89 (6): 2193- 2203
doi: 10.1785/0220180159
6 CASTALDO P, CAVALERI L, DI-TRAPANI F Seismic vulnerability of structures and infrastructures: strategies for assessment and mitigation[J]. Ingegneria Sismica, 2017, 34 (3): 3
7 GAUTAM D, DONG Y Multi-hazard vulnerability of structures and lifelines due to the 2015 Gorkha earthquake and 2017 central Nepal flash flood[J]. Journal of Building Engineering, 2018, 17: 196- 201
doi: 10.1016/j.jobe.2018.02.016
8 JENELIUS E, PETERSEN T, MATTSSON L G Importance and exposure in road network vulnerability analysis[J]. Transportation Research Part a: Policy and Practice, 2006, 40 (7): 537- 560
doi: 10.1016/j.tra.2005.11.003
9 MENONI S, PERGALANI F, BONI M P, et al Lifelines earthquake vulnerability assessment: a systemic approach[J]. Soil Dynamics and Earthquake Engineering, 2002, 22 (9-12): 1199- 1208
10 PITILAKIS K, ALEXOUDI M, ARGYROUDIS S, et al Earthquake risk assessment of lifelines[J]. Bulletin of Earthquake Engineering, 2006, 4 (4): 365- 390
doi: 10.1007/s10518-006-9022-1
11 IMAI T, WADA S, KOIKE T Seismic risk assessment and mitigation for the existing lifeline[J]. Journal of Earthquake and Tsunami, 2011, 5 (1): 31- 45
doi: 10.1142/S1793431111001108
12 BRUNEAU M, CHANG S E, EGUCHI R T, et al A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19 (4): 733- 752
doi: 10.1193/1.1623497
13 李强, 陈志龙, 赵旭东 地震灾害下城市生命线体系恢复力双维度综合评估[J]. 土木工程学报, 2017, 50 (2): 65- 72
LI Qiang, CHEN Zhi-long, ZHAO Xu-dong Seismic resilience assessment of urban lifeline systems: a double-dimensional approach[J]. China Civil Engineering Journal, 2017, 50 (2): 65- 72
14 CIMELLARO G P, REINHORN A M, BRUNEAU M Framework for analytical quantification of disaster resilience[J]. Engineering Structures, 2010, 32 (11): 3639- 3649
doi: 10.1016/j.engstruct.2010.08.008
15 ZHAO X D, CAI H, CHEN Z L, et al Assessing urban lifeline systems immediately after seismic disaster based on emergency resilience[J]. Structure and Infrastructure Engineering, 2016, 12 (12): 1636- 1651
16 赵旭东, 陈志龙, 蔡浩, 等 城市关键基础设施体系毁伤恢复力评估方法研究[J]. 兵工学报, 2016, 37 (Suppl.1): 101- 108
ZHAO Xu-dong, CHEN Zhi-long, CAI Hao, et al Resilience assessment of urban critical infrastructure systems[J]. Acta Armamentarii, 2016, 37 (Suppl.1): 101- 108
17 ZHAO X D, CHEN Z L, GONG H D Effects comparison of different resilience enhancing strategies for municipal water distribution network: a multidimensional approach[J]. Mathematical Problems in Engineering, 2015, 438063: 1- 16
18 OUYANG M, DUENAS-OSORIO L, MIN X A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36–37: 23- 31
19 赵旭东, 陈志龙, 龚华栋, 等 关键基础设施体系灾害毁伤恢复力研究综述[J]. 土木工程学报, 2017, 50 (12): 62- 71
ZHAO Xu-dong, CHEN Zhi-long, GONG Hua-dong, et al Review on the study of disaster resilience of critical infrastructure systems[J]. China Civil Engineering Journal, 2017, 50 (12): 62- 71
20 HOLMGREN A J Using graph models to analyze the vulnerability of electric power networks[J]. Risk Analysis, 2006, 26 (4): 955- 969
doi: 10.1111/j.1539-6924.2006.00791.x
21 BERDICA K An introduction to road vulnerability: what has been done, is done and should be done[J]. Transport Policy, 2002, 9 (2): 117- 127
doi: 10.1016/S0967-070X(02)00011-2
22 HAIMES Y Y On the definition of vulnerabilities in measuring risks to infrastructures[J]. Risk Analysis, 2006, 26 (2): 293- 296
doi: 10.1111/j.1539-6924.2006.00755.x
23 HAIMES Y Y Responses to Terjeaven’s paper: on some recent definitions and analysis frameworks for risk, vulnerability and resilience[J]. Risk Analysis, 2011, 31 (5): 689- 692
doi: 10.1111/j.1539-6924.2011.01587.x
24 BURITICA J A M, SANCHEZ-SILVA M, TESFAMARIAM S Hierarchical seismic vulnerability assessment of power transmission systems: sensitivity analysis of fragility curves and clustering algorithms[J]. Canadian Journal of Civil Engineering, 2017, 44 (2): 80- 89
doi: 10.1139/cjce-2015-0411
25 YIGIT A, LAV M A, GEDIKLI A Vulnerability of natural gas pipelines under earthquake effects[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9 (1): 04017036
doi: 10.1061/(ASCE)PS.1949-1204.0000295
26 DUE?AS-OSORIO L, CRAIG J I, GOODNO B J, et al Interdependent response of networked systems[J]. Journal of Infrastructure Systems, 2007, 13 (3): 185- 194
doi: 10.1061/(ASCE)1076-0342(2007)13:3(185)
27 CHANG S E, MCDANIELS T L, MIKAWOZ J, et al Infrastructure failure interdependencies in extreme events: power outage consequences in the 1998 Ice Storm[J]. Natural Hazards, 2007, 41 (2): 337- 358
doi: 10.1007/s11069-006-9039-4
28 赵文武, 伍国正 我国南方冰雪灾害的特征与城市救灾对策研究[J]. 中国安全科学学报, 2008, (10): 5- 9
ZHAO Wen-wu, WU Guo-zheng Characteristics of snow disasters in south china and countermeasures for urban disaster relief[J]. China Safety Science Journal, 2008, (10): 5- 9
29 FEMA. Multi-hazard loss estimation methodology, earthquake model (HAZUS-MH MR4) [R]. Washington DC: FEMA, 2003.
30 RINALIDI S M, PEERENBOOM J P, KELLY T Identifying, understanding and analyzing critical infrastructure interdependencies[J]. IEEE Control System Magazine, 2001, 21 (6): 11- 25
doi: 10.1109/37.969131
31 CHANG S E, MCDANELS T, BEAUBIEN C. Societal impacts of infrastructure failure interdependencies: building an empirical knowledge base [C] // proceedings of the 2009 Technical Council on Lifeline Earthquake Engineering Conference. Oakland: TCLEE, 2009: 693–702.
32 MCDANELS T, CHANG S, PETERSON K, et al Empirical framework for characterizing infrastructure failure interdependencies[J]. Journal of Infrastructure Systems, 2007, 13 (3): 175- 184
doi: 10.1061/(ASCE)1076-0342(2007)13:3(175)
33 FRANCHINA L, CARBONELLI M, GRATTA L, et al An impact-based approach for the analysis of cascading effects in critical infrastructures[J]. International Journal of Critical Infrastructures, 2011, 7 (1): 73- 90
doi: 10.1504/IJCIS.2011.038958
34 CARDELLINI V, CASALICCHIO E, GALLI E. Agent-based modeling of interdependencies in critical infrastructures through UML [C] // Proceedings of the 2007 spring simulation multi conference. Virginia: [s. n.], 2007: 119–126.
35 CASALICCHIO E, GALLI E, TUCCI S Agent-based modelling of interdependent critical infrastructures[J]. International Journal of Systems of Systems Engineering, 2010, 2 (1): 60- 75
doi: 10.1504/IJSSE.2010.035381
36 THOMPSON J R, FREZZA D, NECIOGLU B Interdependent critical infrastructure model (ICIM): an agent-based model of power and water infrastructure[J]. International Journal of Critical Infrastructure Protection, 2019, 24: 144- 165
doi: 10.1016/j.ijcip.2018.12.002
37 BROWN T, BEYELER W, BARTON D Assessing infrastructure interdependencies: the challenge of risk analysis for complex adaptive systems[J]. International Journal of Critical Infrastructure, 2004, 1 (1): 108- 117
doi: 10.1504/IJCIS.2004.003800
38 STAPELBERG R F Infrastructure systems interdependencies and risk informed decision making (RIDM): impact scenario analysis of infrastructure risks induced by natural, technological and intentional hazards[J]. Journal of Systemics, Cybernetics and Informatics, 2008, 6 (5): 21- 27
39 SANTELLA N, STEINBERG L J, PARKS K Decision making for extreme events: modeling critical infrastructure interdependencies to aid mitigation and response planning[J]. Review of Policy Research, 2009, 26 (4): 409- 422
doi: 10.1111/j.1541-1338.2009.00392.x
40 HAIMES Y Y, HOROWITZ B M, LAMBERT J H, et al Inoperability input–output model for interdependent infrastructure sectors. I: theory and methodology[J]. Journal of Infrastructure Systems, 2005, 11 (2): 67- 79
doi: 10.1061/(ASCE)1076-0342(2005)11:2(67)
41 CROWTHER K G, HAIMES Y Y Development of the multiregional inoperability input-output model (MRIIM) for spatial explicitness in preparedness of interdependent regions[J]. Systems Engineering, 2010, 13 (1): 28- 46
42 LIN J, TAI K, TIONG R L K, et al Analyzing impact on critical infrastructure using input-output interdependency model: case studies[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3 (4): 04017016
doi: 10.1061/AJRUA6.0000919
43 XU W P, WANG Z J, HONG L The uncertainty recovery analysis for interdependent infrastructure systems using the dynamic inoperability input-output model[J]. International Journal of Systems Science, 2015, 46 (7): 1299- 1306
doi: 10.1080/00207721.2013.822121
44 DUE?AS-OSORIO L, CRAIG J L, GOODNO B J. Probabilistic response of interdependent infrastructure networks [C] // Proceedings of the 2nd Annual Meeting of the Asian-Pacific Network of Centers for Earthquake Engineering Research. Hawaii: ANCER, 2004: 28–30.
45 DUE?AS-OSORIO L, JAMES I C, BARRY J G Seismic response of critical interdependent networks[J]. Earthquake Engineering and Structural Dynamics, 2007, 36 (2): 285- 306
doi: 10.1002/eqe.626
46 OUYANG M, HONG L, MAO Z J, et al A methodological approach to analyze vulnerability of interdependent infrastructures[J]. Simulation Modeling Practice and Theory, 2009, 17 (5): 817- 828
doi: 10.1016/j.simpat.2009.02.001
47 OUYANG M, DUE?AS-OSORIO L An efficient approach to compute generalized interdependent effects between infrastructure systems[J]. Journal of Computing in Civil Engineering, 2011, 25 (5): 394- 406
doi: 10.1061/(ASCE)CP.1943-5487.0000103
48 OUYANG M Review on modeling and simulation of interdependent critical infrastructure[J]. Reliability Engineering and System Safety, 2014, 121: 43- 60
doi: 10.1016/j.ress.2013.06.040
49 ZHOU F, YUAN Y B, ZHANG M Y Robustness analysis of interdependent urban critical infrastructure networks against cascade failures[J]. Arabian Journal for Science and Engineering, 2018, 44 (3): 2837- 2851
50 周方, 袁永博, 张明媛 级联失效下城市多层关键基础设施系统脆弱性分析[J]. 系统工程, 2018, 36 (7): 66- 74
ZHOU Fang, YUAN Yong-bo, ZHANG Ming-yuan Multilayer coupled network of urban critical infrastructure system vulnerability analysis[J]. System Engineering, 2018, 36 (7): 66- 74
51 李天华, 袁永博, 张明媛 基于可变模糊聚类的地震作用下电网节点脆弱性分析[J]. 科学技术与工程, 2018, 18 (18): 126- 130
LI Tian-hua, YUAN Yong-bo, ZHANG Ming-yuan Analysis of power gird vulnerability in the earthquake based on variable fuzzy clustering[J]. Science Technology and Engineering, 2018, 18 (18): 126- 130
52 何祥. 物流基础设施系统级联失效建模与脆弱性研究[D]. 大连: 大连理工大学, 2017.
HE Xiang. Cascading failure modeling and vulnerability analysis of logistics infrastructure system [D]. Dalian: Dalian University of Technology, 2017.
53 中华人民共和国国家标准. 中国地震动参数区划图: GB18306-2015 [S]. 北京: 中华人民共和国国家标准化管理委员会, 2015.
[1] 席仁强,杜修力,王丕光,许成顺,许坤. 单桩式海上风力机整体化地震反应[J]. 浙江大学学报(工学版), 2021, 55(4): 757-766.
[2] 朱斌,蒋楠,周传波,贾永胜,罗学东,吴廷尧. 粉质黏土层直埋铸铁管道爆破地震效应[J]. 浙江大学学报(工学版), 2021, 55(3): 500-510.
[3] 张勤玲,黄志义. 高温高湿盐环境下SBS改性沥青胶浆的高温性能[J]. 浙江大学学报(工学版), 2021, 55(1): 38-45.
[4] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[5] 曲扬,罗永峰,朱钊辰,黄青隆. 网壳结构地震反应分析的振型刚度法[J]. 浙江大学学报(工学版), 2020, 54(6): 1068-1077.
[6] 王维,高尚信,李爱群,王星星. 基于非对称模型的碟簧隔震单自由度体系地震响应[J]. 浙江大学学报(工学版), 2020, 54(6): 1095-1105.
[7] 江金生,任浩然,李瀚野. 基于卷积自编码器的地震数据处理[J]. 浙江大学学报(工学版), 2020, 54(5): 978-984.
[8] 王阳,裘乐淼,刘晓健,张树有,张利春. 基于多域关联约束的复杂产品布局重构技术[J]. 浙江大学学报(工学版), 2020, 54(4): 650-661.
[9] 刘佩,朱海鑫,杨维国. 基于子集模拟的非线性相邻结构地震碰撞易损性及风险评估方法[J]. 浙江大学学报(工学版), 2020, 54(2): 213-220.
[10] 田秀娟,于德新,周户星,邢雪,王世广. 基于改进Newman算法的动态控制子区划分[J]. 浙江大学学报(工学版), 2019, 53(5): 950-956.
[11] 黄博,廖凯龙,赵宇,蒋建群. 考虑河谷地形影响的多层框架结构地震易损性[J]. 浙江大学学报(工学版), 2019, 53(4): 692-701.
[12] 诸葛翰卿,谢旭,廖燕华,唐站站. 横桥向地震作用对钢拱桥地震损伤发展的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 702-712.
[13] 刘帅,潘超,周志光. 耗能联肢墙体系的减震性能及参数影响[J]. 浙江大学学报(工学版), 2019, 53(3): 492-502.
[14] 陈健,莫蓉,初建杰,陈登凯,宫静. 云设计制造模式下的社交化协作团队构建方法[J]. 浙江大学学报(工学版), 2019, 53(3): 444-454.
[15] 董月,冯华君,徐之海,陈跃庭,李奇. Attention Res-Unet: 一种高效阴影检测算法[J]. 浙江大学学报(工学版), 2019, 53(2): 373-381.