Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 221-232    DOI: 10.3785/j.issn.1008-973X.2020.02.002
土木与交通工程     
温度效应对钙质砂体积应变和固结特性的影响
何绍衡1(),夏唐代1,于丙琪1,丁智2,*(),高敏1,单华峰3
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江大学城市学院 土木工程系,浙江 杭州 310015
3. 台州学院 滨海环境与岩土工程研究所,浙江 台州 318000
Effect of temperature on volume strain and consolidation characteristics of calcareous sand
Shao-heng HE1(),Tang-dai XIA1,Bing-qi YU1,Zhi DING2,*(),Min GAO1,Hua-feng SHAN3
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Department of Civil Engineering, Zhejiang University City College, Hangzhou 310015, China
3. Institute of Coastal Environment and Geotechnical Engineering, Taizhou University, Taizhou 318000, China
 全文: PDF(2430 KB)   HTML
摘要:

为了探究温度变化引起钙质砂体积应变的作用机制,在不同温度和围压下对南海钙质砂进行温控三轴试验,并与石英砂试验进行对比. 研究表明:升温引起相对密实度为70%的钙质砂和石英砂产生压缩体积应变;升温引起的钙质砂热体积应变远大于石英砂,且钙质砂热体积应变对围压的敏感性远强于石英砂;在围压较大时,升温引起的钙质砂热体积应变明显增加且体积应变发展模式显著改变. 利用温控固结仪研究不同温度下钙质砂和石英砂的固结特性. 研究表明:随温度升高,2种砂在e-lg p面内的压缩曲线先向上移再下移,直线段的斜率先减小后增大,但达到固结稳定的时间均提前;不同于石英砂,在45~75°C下,升温导致钙质砂的固结压缩量显著增加,远超常温水平,这是因为由筛分试验发现,随温度增加,钙质砂颗粒破碎程度增大,导致其在高温固结时的压缩量增大.

关键词: 温度效应南海钙质砂温控三轴仪体积变化固结特性    
Abstract:

A series of temperature-controlled triaxial tests were conducted on calcareous sand from the South China Sea under different temperatures and confining pressures, in order to explore the mechanism of effect of temperature change on the volume strain of calcareous sand. Results show that the increase of temperature will cause compressive volume strain of calcareous sand and quartz sand with relative density of 70%. The thermal volume strain of calcareous sand caused by temperature rising is much larger than that of quartz sand, and the sensitivity of thermal volume strain of calcareous sand to confining pressure is much greater than that of quartz sand. When the confining pressure is high, the thermal volume strain of calcareous sand caused by temperature rising increases significantly and the development mode of volume strain changes obviously. The consolidation characteristics of calcareous sand and quartz sand under different temperatures were studied by using temperature-controlled consolidation apparatus. Results show that with the increase of temperature, the compression curves of two kinds of sand in e-lg p plane move upward and then downward, and the slope of straight section decreases first and then increases, but the consolidation stability time of two kinds of sand is ahead of time. Comparing with quartz sand, the consolidation compression of calcareous sand increases significantly in the temperature range of 45~75 °C, which is much higher than that of calcareous sand at normal temperature. Screening tests show that with the increase of temperature, the degree of particle breakage of calcareous sand after consolidation increases significantly, which leads to the increase of compression of calcareous sand during high temperature consolidation.

Key words: temperature effect    calcareous sand from South China Sea    temperature-controlled triaxial apparatus    volume change    consolidation characteristics
收稿日期: 2019-06-23 出版日期: 2020-03-10
CLC:  TU 111  
基金资助: 浙江省自然科学基金联合基金(重点项目)资助项目(LHZ20E080001);浙江省自然科学基金探索资助项目(LQ20E080010);浙江省重点研发计划资助项目(2020C01102);中交交通基础工程环保与安全重点实验室开放课题资助项目(2019)
通讯作者: 丁智     E-mail: heshaoheng@zju.edu.cn;dingz@zucc.edu.cn
作者简介: 何绍衡(1995—),男,博士生,从事钙质砂静力和动力特性研究. orcid.org/0000-0001-7883-971X. E-mail: heshaoheng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何绍衡
夏唐代
于丙琪
丁智
高敏
单华峰

引用本文:

何绍衡,夏唐代,于丙琪,丁智,高敏,单华峰. 温度效应对钙质砂体积应变和固结特性的影响[J]. 浙江大学学报(工学版), 2020, 54(2): 221-232.

Shao-heng HE,Tang-dai XIA,Bing-qi YU,Zhi DING,Min GAO,Hua-feng SHAN. Effect of temperature on volume strain and consolidation characteristics of calcareous sand. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 221-232.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.002        http://www.zjujournals.com/eng/CN/Y2020/V54/I2/221

图 1  天然钙质砂试样X射线衍射结果
砂岩 Gs emax emin Cu Cc Dr /%
钙质砂 2.750 1.107 0.750 1.793 0.781 70
石英砂 2.659 0.508 0.342 5.030 1.350 70
表 1  钙质砂和石英砂的基本物理参数
图 2  典型钙质砂颗粒的SEM图像
图 3  钙质砂和石英砂的级配曲线
图 4  温度控制式应力路径三轴仪
图 5  平均有效应力-偏应力-温度三维应力路径
图 6  温度控制式固结系统
图 7  水的热膨胀系数与温度和围压的关系
图 8  钙质砂固结中温度和排水体积随时间的变化曲线
图 9  试样排水体积与温度和围压的关系
图 10  不同相对密实度下温度引起砂土体积应变模式
图 11  不同围压下温度变化所引起的钙质砂和石英砂体积应变
图 12  不同温度下钙质砂和石英砂的固结压缩随时间的变化
图 13  不同温度下固结后的钙质砂级配曲线
图 14  固结后钙质砂的相对颗粒破碎指标随温度的变化
图 15  不同温度下钙质砂和石英砂的e-lg p曲线
图 16  不同温度下钙质砂和石英砂归一化孔隙比随时间的变化
图 17  不同竖向压力下钙质砂的压缩模量随温度的变化
图 18  钙质砂和石英砂的lg Ei/pa与lg p/pa的关系
图 19  钙质砂和石英砂试验常数K、b的关系
图 20  不同温度下钙质砂和石英砂的试验参数b与温度的关系
图 21  钙质砂和石英砂的压缩模量实测值与本研究所提出的模型预测曲线对比
1 芮圣洁, 国振, 王立忠, 等 钙质砂与钢界面循环剪切刚度与阻尼比的试验研究[J]. 岩土力学, 2020, 41 (1): 1- 9
RUI Sheng-jie, GUO Zhen, WANG Li-zhong, et al Experimental study on cyclic shear stiffness and damping ratio of carbonate sand-steel interface[J]. Rock and Soil Mechanics, 2020, 41 (1): 1- 9
2 陈海洋, 汪稔, 李建国, 等 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26 (9): 1389- 1392
CHEN Hai-yang, WANG Ren, LI Jian-guo, et al Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26 (9): 1389- 1392
doi: 10.3969/j.issn.1000-7598.2005.09.008
3 汪轶群, 洪义, 国振, 等 南海钙质砂宏细观破碎力学特性[J]. 岩土力学, 2018, 39 (1): 199- 206
WANG Yi-qun, HONG Yi, GUO Zhen, et al Micro-and macro-mechanical behavior of crushable calcareous sand in South China Sea[J]. Rock and Soil Mechanics, 2018, 39 (1): 199- 206
4 LIU H, LIU H, XIAO Y, et al Effects of temperature on the shear strength of saturated sand[J]. Soils and Foundations, 2018, 58 (6): 1326- 1338
doi: 10.1016/j.sandf.2018.07.010
5 朱长歧, 陈海洋, 孟庆山, 等 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, (7): 1831- 1836
ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, (7): 1831- 1836
6 蒋明镜, 吴迪, 曹培, 等 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 2017, (Suppl.1): 1- 5
JIANG Ming-jing, WU Di, CAO Pei, et al Connected inner pore analysis of calcareous sands using SEM[J]. Chinese Journal of Geotechnical Engineering, 2017, (Suppl.1): 1- 5
7 周博, 库泉, 吕珂臻, 等 钙质砂颗粒内孔隙三维表征[J]. 天津大学学报: 自然科学与工程技术版, 2019, (Suppl.1): 41- 48
ZHOU Bo, KU Quan, LV Ke-zhen, et al Three-dimensional characterization of inner pores in calcareous sand particles[J]. Journal of Tianjin University: Science and Technology, 2019, (Suppl.1): 41- 48
8 WANG X, ZHU C Q, WANG X Z, et al Study of dilatancy behaviors of calcareous soils in a triaxial test[J]. Marine Georesources and Geotechnology, 2018, 37: 1- 14
9 WANG X, ZHU C Q, WANG X Z Experimental study on the coefficient of lateral pressure at rest for calcareous soils[J]. Marine Georesources and Geotechnology, 2019, 37: 1- 13
10 COOP M R, SORENSEN K K, FREITAS T M, et al Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54 (3): 157- 163
doi: 10.1680/geot.2004.54.3.157
11 张家铭, 张凌, 蒋国盛, 等 剪切作用下钙质砂颗粒破碎试验研[J]. 岩土力学, 2008, 29 (10): 2789- 2793
ZHANG Jia-ming, ZHANG Lin, JIANG Guo-sheng, et al Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29 (10): 2789- 2793
doi: 10.3969/j.issn.1000-7598.2008.10.037
12 吕亚茹, 李治中, 李浪 高应力状态下钙质砂的一维压缩特性及试验影响因素分析[J]. 岩石力学与工程学报, 2019, 38 (Suppl.1): 3142- 3150
LV Ya-ru, LI Zhi-zhong, LI Lang One-dimensional compression behavior of calcareous sand and its experimental technology under high stress conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (Suppl.1): 3142- 3150
13 王刚, 叶沁果, 查京京 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40 (5): 802- 810
WANG Gang, YE Qin-guo, ZHA Jing-jing Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (5): 802- 810
doi: 10.11779/CJGE201805004
14 梁珂, 陈国兴, 刘抗, 等 饱和珊瑚砂最大动剪切模量的循环加载衰退特性及预测模型[J]. 岩土力学, 2020, 41 (2): 1- 11
LIANG Ke, CHEN Guo-xing, LIU Kang, et al The degradation properties and the prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading[J]. Soils and Foundations, 2020, 41 (2): 1- 11
15 刘汉龙, 肖鹏, 肖杨, 等 MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40 (1): 38- 45
LIU Han-long, XIAO Peng, XIAO Yang, et al Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (1): 38- 45
doi: 10.11779/CJGE201801002
16 PAASWELL R E Temperature effects on clay soil consolidation[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93 (3): 9- 21
17 CEKEREVAC C, LALOUI L Experimental study of thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28 (3): 209- 228
doi: 10.1002/nag.332
18 ABUEL-NAGA H M, BERGADO D T, LIM B F Effect of temperature on shear strength and yielding behavior of soft Bangkok clay[J]. Soils and Foundations, 2007, 47 (3): 423- 436
doi: 10.3208/sandf.47.423
19 ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (7): 902- 910
doi: 10.1061/(ASCE)1090-0241(2006)132:7(902)
20 LALOUI L Thermo-mechanical behaviour of soils[J]. French Revue of Civil Engineering, 2001, 5 (6): 809- 843
21 GRAHAM J, TANAKA N, CRILLY T, et al Modified cam-clay modelling of temperature effects in clays[J]. Canadian Geotechnical Journal, 2001, 38 (3): 608- 621
22 CAMPANELLA R G, MITCHELL J K Influence of temperature variations on soil behaviour[J]. Journal of the Soil Mechanics and Foundation Division, 1968, 94 (3): 709- 734
23 NG C W W, WANG S H, ZHOU C Volume change behaviour of saturated sand under thermal cycles[J]. Géotechnique Letters, 2016, 6 (2): 124- 131
doi: 10.1680/jgele.15.00148
24 高彦芳, 陈勉, 林伯韬, 等 温度对油砂力学性质的影响规律研究[J]. 岩石力学与工程学报, 2018, 37 (11): 2520- 2535
GAO Yan-fang, CHEN Mian, LIN Bo-tao, et al Thermal influences on mechanical properties of oil sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (11): 2520- 2535
25 何绍衡, 郑晴晴, 夏唐代, 等 考虑时间间歇效应的地铁列车荷载下海相软土长期动力特性试验研究[J]. 岩石力学与工程学报, 2019, 38 (2): 353- 364
HE Shao-heng, ZHENG Qing-qing, XIA Tang-dai, et al Experimental study on long-term dynamic characteristics of marine soft soils under metro train loads considering time intermittent effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (2): 353- 364
26 CAI Y, HAO B, GU C, et al Effect of anisotropic consolidation stress paths on the undrained shear behavior of reconstituted Wenzhou clay[J]. Engineering Geology, 2018, 242: 23- 33
doi: 10.1016/j.enggeo.2018.05.016
27 CEKEREVAC C, LALOUI L, VULLIET L A novel triaxialapparatus for thermo-mechanical testing of soils[J]. Geotechnical Testing Journal, 2005, 28 (2): 161- 170
28 BALDI G, HUECKEL T, PELLEGRINI R Thermal volume changes of the mineral-water system in low-porosity clay soils[J]. Canadian Geotechnical Journal, 1988, 25 (4): 807- 825
doi: 10.1139/t88-089
29 HABIBAGAHI K Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal, 1977, 71 (11): 14- 34
30 HARDIN B O Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111 (10): 1177- 1192
doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
31 GREGORY A S, WHALLEY W R, WATTS C W, et al Calculation of the compression index and precompression stress from soil compression test data[J]. Soil Tillage Research, 2006, 89 (1): 45- 57
doi: 10.1016/j.still.2005.06.012
32 CAVALIERI K M V, ARVIDSSON J, DA SILVA A P, et al Determination of precompression stress from uniaxial compression tests[J]. Soil Tillage Research, 2008, 98 (1): 17- 26
doi: 10.1016/j.still.2007.09.020
33 王志亮, 郑明新, 李永池 求前期固结压力的数学模型研究及应用[J]. 岩土力学, 2005, 26 (10): 1587- 1590
WANG Zhi-liang, ZHENG Ming-xin, LI Yong-chi Research on mathematic model method for calculating pre-consolidation pressure and its application[J]. Rock and Soil Mechanic, 2005, 26 (10): 1587- 1590
doi: 10.3969/j.issn.1000-7598.2005.10.012
[1] 王力,刘世忠,路韡,牛思胜,施鑫磊. 新型波形钢腹板组合箱梁温度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 675-683.
[2] 傅理文, 汪劲丰, 程伟平, 向华伟. 方形混凝土桥墩裂缝成因分析及对策[J]. J4, 2010, 44(9): 1738-1745.