Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2085-2091    DOI: 10.3785/j.issn.1008-973X.2019.11.005
机械工程     
基于回油液阻的压力伺服阀啸叫分析
张鹤然1(),欧阳小平1,*(),郭生荣2,刘玉龙2
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 航空工业金城南京机电液压工程研究中心 航空机电系统综合航空科技重点实验室,江苏 南京 211100
Analysis on whistle of pressure servo-valve based on oil-return resistance
He-ran ZHANG1(),Xiao-ping OUYANG1,*(),Sheng-rong GUO2,Yu-long LIU2
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, AVIC Jincheng Nanjing Engineering Institute of Aircraft System, Nanjing 211100, China
 全文: PDF(1400 KB)   HTML
摘要:

对压力伺服阀的啸叫问题进行仿真与试验分析,验证了滑阀级回油液阻增大会引起伺服阀啸叫. 基于机电系统分析软件AMESim建立压力伺服阀完整的仿真模型,对比分析仿真与试验的动静态特性曲线,验证仿真模型的正确性. 分析滑阀级不同的回油液阻对衔铁组件中弹簧管振荡幅值的影响;剖析产生自激振荡的条件和本质原因;探究伺服阀内部振荡的传递路径. 研究发现,伺服阀滑阀级回油液阻的变化,会引起力矩马达衔铁组件的自激振荡,通过合理优化滑阀阀芯回油间隙可以避免这部分伺服阀振荡啸叫;通过增大滑阀至喷嘴腔容积也可以切断振荡传递以消除伺服阀振荡啸叫.

关键词: 压力伺服阀啸叫自激振荡回油液阻AMESim    
Abstract:

Simulation and experiment analyses were conducted on the whistle of the pressure servo-valve, and it was verified that the increase of the oil return resistance of the valve spool would cause whistling. A complete simulation model of the pressure servo-valve was built based on the electromechanical system analysis software, AMESim platform. The validity of the simulation model was verified by comparing the dynamic and static characteristic curves of the test and the simulation model. The effect of oil return resistance at different valve spool levels on the oscillation amplitude in spring tube in armature assembly were analyzed. The conditions and essential causes of self-excited oscillation were explored. The transmission path of internal oscillation of the servo valve was analyzed. Results show that the change of the oil return resistance of the servo valve spool will cause the self-oscillation of the torque motor armature assembly, and the oscillating howling of the servo valve can be avoided by reasonable optimization of the oil return gap of the valve spool. By increasing the chamber volume between the valve spool and the nozzle, the oscillation transmission path can also be cut off to eliminate the oscillating howling of the servo valve.

Key words: pressure servo-valve    whistle    self-excited oscillation    oil-return resistance    AMESim
收稿日期: 2018-06-12 出版日期: 2019-11-21
CLC:  TH 137  
基金资助: 国家自然科学基金资助项目(51675473);国家创新群体资助项目(51521064);高校基本科研专项资金资助项目(2018XZZX001-04)
通讯作者: 欧阳小平     E-mail: heran@zju.edu.cn;ouyangxp@zju.edu.cn
作者简介: 张鹤然(1993—),女,硕士生,从事流体传动与控制研究. orcid.org/0000-0003-3417-4087. E-mail: heran@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张鹤然
欧阳小平
郭生荣
刘玉龙

引用本文:

张鹤然,欧阳小平,郭生荣,刘玉龙. 基于回油液阻的压力伺服阀啸叫分析[J]. 浙江大学学报(工学版), 2019, 53(11): 2085-2091.

He-ran ZHANG,Xiao-ping OUYANG,Sheng-rong GUO,Yu-long LIU. Analysis on whistle of pressure servo-valve based on oil-return resistance. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2085-2091.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.005        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2085

图 1  压力伺服阀原理图
图 2  压力伺服阀模型图
图 3  压力伺服阀动静态性能试验台
参数 数值
油液黏度/(kg·m?1·s?1 0.008 5
油液密度/(kg·m?3 850
油液弹性模量/MPa 1 700
回油间隙/mm 0.06
供油压力/MPa 21
回油压力/MPa 0.6
额定电流/mA 9
表 1  压力伺服阀参数
图 4  输入电流-输出压力曲线的仿真和试验结果对比
图 5  压力伺服阀频率特性曲线
图 6  伺服阀滑阀阀芯结构示意图
图 7  衔铁组件中挡板的位移变化曲线
图 8  不同回油间隙下衔铁组件的振荡幅值
图 9  不同回油间隙的伺服阀测试噪声频谱图
图 10  滑阀阀芯所受液动力变化曲线
图 11  滑阀阀芯的位移变化曲线
图 12  不同回油间隙下喷嘴腔的压力变化曲线
图 13  衔铁组件振荡时挡板的位移变化曲线
图 14  伺服阀腔体的压力变化曲线
1 李培滋, 王占林.飞机液压传动与伺服控制[M]. 北京: 工业出版社, 1980: 460-464.
2 李军. 飞机液压系统压力脉冲试验的机理分析与控制 [D]. 西安: 西北工业大学, 2007.
LI Jun. Principle analysis and control for pressure impulse test of airplane hydraulic system [D]. Xi’an: Northwestern Polytechnical University, 2007.
3 CRANE D. Aviation maintenance technician: airframe [M]. 3th ed. Seattle: Aviation Supplies and Academics, 2008.
4 母东杰. 双喷嘴挡板伺服阀流固耦合特性分析及振动抑制 [D]. 北京: 北京交通大学, 2015.
MU Dong-jie. Study on coupled vibration characteristics of electro-hydraulic servo valve and vibration control [D]. Beijing: Beijing Jiaotong University, 2015.
5 陈元章 基于 CFD 的电液伺服阀衔铁组件啸叫研究[J]. 液压气动与密封, 2012, 32 (9): 9- 12
CHEN Yuan-zhang The research on noise of servo valve armature component based on CFD[J]. Hydraulics Pneumatics and Seals, 2012, 32 (9): 9- 12
doi: 10.3969/j.issn.1008-0813.2012.09.003
6 IAN Moir. Mechanical, electrical, and avionics subsystems integration [M]. [S.l.]: Wiley, 2008: 145-147.
7 林丞 电液伺服阀高频自激振荡问题的初步研究[J]. 机床与液压, 1985, 4: 1- 8
LIN Cheng Preliminary study on self-excited oscillation at high-frequency in electrohydraulic servo valve[J]. Machine Tool and Hydraulics, 1985, 4: 1- 8
8 张小洁 电液伺服阀高频自激振荡问题的研究及解决方案[J]. 战术导弹控制技术, 2003, (4): 39- 42
ZHANG Xiao-jie Research of self-excited oscillation at high-frequency in electrohydraulic servo valve and its solution[J]. Control Technology of Tactical Missile, 2003, (4): 39- 42
doi: 10.3969/j.issn.1009-1300-B.2003.04.009
9 李松晶, 彭敬辉, 张亮 伺服阀力矩马达衔铁组件的振动特性分析[J]. 兰州理工大学学报, 2010, 36 (3): 38- 41
LI Song-jing, PENG Jing-hui, ZHANG Liang Analysis of vibrational characteristics of armature assembly in a hydraulic torque motor for servo-valve[J]. Journal of Lanzhou University of Technology, 2010, 36 (3): 38- 41
doi: 10.3969/j.issn.1673-5196.2010.03.009
10 MARTIN C S, MEDLARZ H, WIGGERT D C, et al Cavitation inception in spool valves[J]. Journal of Fluids Engineering, 1981, 103 (4): 564- 575
doi: 10.1115/1.3241768
11 MISRA A, BEHDINAN K Self-excited vibration of a control valve due to fluid–structure interaction[J]. Journal of Fluids and Structures, 2002, 16 (5): 649- 665
doi: 10.1006/jfls.2002.0441
12 KUO C H, JENG W I Lock-on characteristics of a cavity shear layer[J]. Journal of Fluids and Structures, 2003, 18 (6): 715- 728
doi: 10.1016/j.jfluidstructs.2003.08.020
13 ZHANG S, LI S Cavity shedding dynamics in a flapper–nozzle pilot stage of an electro-hydraulic servo-valve: experiments and numerical study[J]. Energy Conversion and Management, 2015, 100: 370- 379
doi: 10.1016/j.enconman.2015.04.047
14 CHEN M, AUNG N Z, LI S, et al Effect of oil viscosity on self-excited noise production inside the pilot stage of a two-stage electrohydraulic servovalve[J]. Journal of Fluids Engineering, 2019, 141: 11106
doi: 10.1115/1.4040500
15 ZIADA S, BUHLAMANN E T, BOLLETER U Flow impingement as an excitation source in control valves[J]. Journal of Fluids and Structures, 1989, 3 (5): 529- 549
doi: 10.1016/S0889-9746(89)80029-5
16 GLAUN A Avoiding flow-induced sympathetic vibration in control valves[J]. Power, 2012, 156 (2): 80- 83
17 JAN L. Steady-state flow-force compensation in a hydraulic spool valve [D]. West lafayette: Purdue University, 2013.
18 阳含和 滑阀自激振动基理及其防止措施初步探讨[J]. 机床与液压, 1977, (6): 20- 45
YANG Han-he Slide valve self-excited oscillation mechanism and explore measures to prevent[J]. Machine Tool and Hydraulics, 1977, (6): 20- 45
19 GAO Dian-rong Finite element numerical simulation and PIV measurement of flow field inside metering-in spool valve[J]. Chinese Journal of Mechanical Engineering, 2009, 22 (1): 102- 108
doi: 10.3901/CJME.2009.01.102
20 郑长松, 范家辉, 杜秋, 等 基于CFD的液压滑阀流场特性与稳态液动力研究[J]. 机床与液压, 2017, 45 (17): 145- 151
ZHENG Chang-song, FAN Jia-hui, DU Qiu, et al Study on characteristics of flow field and steady flow force of hydraulic spool valve based on CFD[J]. Machine Tool and Hydraulics, 2017, 45 (17): 145- 151
doi: 10.3969/j.issn.1001-3881.2017.17.034
21 刘玉龙. 压力伺服阀啸叫机理分析[D]. 杭州: 浙江大学, 2017.
LIU Yu-long. Noise mechanism of the pressure srvo valve [D]. Hangzhou: Zhejiang University, 2017.
[1] 赵艳龙,李醒飞,杨少波,李洪宇,徐佳毅,林越. 剖面浮标“浮星”可变浮力系统性能研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1240-1248.
[2] 贾连辉,李太运. 超大直径盾构管片拼装机关键技术[J]. 浙江大学学报(工学版), 2020, 54(4): 816-823.
[3] 陆亮,夏飞燕,訚耀保,原佳阳,郭生荣. 小球式旋转直驱压力伺服阀卡滞机理研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1265-1273.
[4] 申明,高青,王炎,张天时. 电动汽车电池热管理系统设计与分析[J]. 浙江大学学报(工学版), 2019, 53(7): 1398-1406.
[5] 曾小华, 李文远, 李广含, 宋大凤, 李立鑫. 轮毂液驱车辆泵控系统建模[J]. 浙江大学学报(工学版), 2017, 51(8): 1603-1609.
[6] 廖湘平,龚国芳,彭雄斌,吴伟强. 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报(工学版), 2016, 50(5): 902-912.
[7] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(3): 419-427.
[8] 吕沁, 李德堂, 唐文涛, 曹伟男,金豁然, 胡星辰. 基于液压传动的振荡浮子式波浪发电系统设计[J]. 浙江大学学报(工学版), 2016, 50(2): 234-240.
[9] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[10] 杜睿龙, 陈英龙, 周华, 王佳. 新型高速单柱塞轴向柱塞泵配流机构[J]. 浙江大学学报(工学版), 2016, 50(10): 1902-1910.
[11] 范双双, 杨灿军, 彭时林, 黎开虎, 谢钰, 张绍勇. 水下滑翔机关键承压系统设计与试验研究[J]. J4, 2014, 48(4): 633-640.
[12] 李林,陈家旺,顾临怡,王峰. 轴向柱塞泵/马达变量阀配流机构[J]. J4, 2014, 48(1): 29-34.
[13] 王泽贵, 裴质明, 郝志勇, 缪勇, 周益, 周观鹏, 田文华.  汽车变速器齿轮啸叫噪声试验[J]. J4, 2013, 47(7): 1307-1312.
[14] 邢彤, 杨华勇, 龚国芳. 盾构刀盘驱动液压系统效率对比研究[J]. J4, 2010, 44(2): 358-363+372.
[15] 杨华勇, 邢彤, 龚国芳. 变转速泵控模拟盾构刀盘驱动系统研究[J]. J4, 2010, 44(2): 373-378.