Please wait a minute...
J4  2014, Vol. 48 Issue (4): 633-640    DOI: 10.3785/j.issn.1008-973X.2014.04.011
机械与能源工程     
水下滑翔机关键承压系统设计与试验研究
范双双, 杨灿军, 彭时林, 黎开虎, 谢钰, 张绍勇
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Design and experimental research on key pressure subsystems of underwater glider
FAN Shuang-shuang, YANG Can-jun, PENG Shi-lin, LI Kai-hu, XIE Yu, ZHANG Shao-yong
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1717 KB)   HTML
摘要:

为了研制最大下潜深度为200 m的水下滑翔机,分别对耐压外壳和浮力调节系统的设计方法、仿真分析和压力试验结果进行介绍.根据强度和失稳校核准则以对比计算的方式确定耐压外壳的材料和壁厚,借助有限元分析软件对耐压外壳进行应力和应变分析,通过大高压舱试验有效地验证了耐压外壳的承压性和密封性.浮力调节系统采用吸排油液改变外置油囊体积的方式实现对水下滑翔机系统净浮力的调节,通过AMESim仿真验证了设计方案的可行性,设计小高压舱试验对浮力调节系统的工作性能进行测试,确定了电机-泵的最优效率转速并对该转速下不同负载的响应情况进行调查.该浮力调节系统具有浮力调节准确、运行可靠及结构紧凑的特点.研究表明,设计的水下滑翔机关键承压系统运行稳定,性能可靠,为水下滑翔机的整机研制提供了有力的保证.

Abstract:

In order to develop a 200 m depth underwater glider, the development details of the pressure hull and ballast system of the underwater glider were presented, including the design methods, simulation analysis and pressure tests. Conventional yield and buckling criteria was used to size the hull, with which the material and wall thickness were determined by comparison calculation. Stress distribution and deformation of the designed hull was analyzed with finite element simulation. Pressure test in hyperbaric chamber validated the strength and sealability of the hull. Ballast system changes the volume of an external bladder by inflating or deflating oil to modulate the net wight of underwater glider. AMESim simulation validated the feasibility of the system. A special kind of pressure test was designed to examine the performance of the ballast system, with which the optimal-efficiency speed of motor was obtained and the response capability of ballast system was investigated at this speed under different pressures. The ballast system is characterized as accurate buoyancy adjustment, reliable operation and compact structure. The two subsystems functioned well and had reliable performance during pressure tests, which provided a powerful guarantee for the development of the whole underwater glider.

出版日期: 2014-09-03
:  TP 242  
基金资助:

浙江省自然科学基金团队资助项目(R1090453).

通讯作者: 杨灿军,男,教授,博导.     E-mail: ycj@zju.edu.cn
作者简介: 范双双(1986—),女,博士生,从事海洋机电装备的研究.E-mail: fanshuangshuang@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

范双双, 杨灿军, 彭时林, 黎开虎, 谢钰, 张绍勇. 水下滑翔机关键承压系统设计与试验研究[J]. J4, 2014, 48(4): 633-640.

FAN Shuang-shuang, YANG Can-jun, PENG Shi-lin, LI Kai-hu, XIE Yu, ZHANG Shao-yon. Design and experimental research on key pressure subsystems of underwater glider. J4, 2014, 48(4): 633-640.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.04.011        http://www.zjujournals.com/eng/CN/Y2014/V48/I4/633

[1] WEBB D, SIMONETTI P, JONES C. SLOCUM: an underwater glider propelled by environmental energy [J]. IEEE Journal of Oceanic Engineering, 2001, 26: 447-452.
[2] ERIKSEN C, OSSE T, LIFHT R, et al. Seaglider: A long range autonomous underwater vehicle for oceanographic research [J]. IEEE Journal of Oceanic Engineering, 2001, 26: 424-436.
[3] SHERMAN J, DAVIS R, OWENS W, et al. The autonomous underwater glider “Spray” [J]. IEEE Journal of Oceanic Engineering, 2001, 26: 437-446.
[4] RUDNICK D, DAVIS R, FRATANTONI D. Underwater gliders for ocean research [J]. Marine Technology Society Journal, 2004, 38: 73-84.
[5] MA Zheng, ZHANG Hua, ZHANG Nan, et al. Study on energy and hydrodynamic performance of the underwater glider [J]. Journal of Ship Mechanics, 2006,10(3): 53-60.
[6] 李志伟,崔维成. 水下滑翔机水动力外型研究综述[J]. 船舶力学, 2012,16(7): 829-837.
LI Zhi-wei, CUI Wei-cheng. Overview on the hydrodynamic performance of underwater gliders [J]. Journal of Ship Mechanics, 2012, 16(7): 829837.
[7] WANG Shu-xin, SUN Xiu-jun, WANG Yan-hui, et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider [J]. China Ocean Engineering, 2010, 25(1): 97-112.
[8] 曾庆礼,张宇文,赵加鹏.水下滑翔机总体设计与运动分析[J].计算机仿真, 2010, 27(1): 1-5.
ZENG Qing-li, ZHANG Yu-wen, ZHAO Jia-peng.Design and hydrodynamic analysis of underwater glider [J]. Computer Simulation, 2010,27(1): 15.
[9] YU Jian-cheng, ZhANG Ai-qun, JIN Wen-ming, et al. Development and experiments of the sea-wing underwater glider [J]. China Ocean Engineering, 2011, 25(4): 721-736.
[10] 赵伟,杨灿军,陈鹰.水下滑翔机浮力调节系统设计及动态性能研究[J].浙江大学学报:工学版,2009, 43(10): 1772-1776.
ZHAO Wei, YANG Can-jun, CHEN Ying. Design and dynamic performance study of buoyancy regulating system of autonomous underwater glider [J]. Journal of Zhejiang University: Engineering Science, 2009, 43(10): 1772-1776.
[11] 王志文,蔡仁良.化工容器设计[M].北京:化学工业出版社, 2005.
[12] 丁伯民,蔡仁良.压力容器设计:原理及工程应用[M].北京: 中国石化出版社, 1992.
[13] 张洪信, 管殿柱. 有限元基础理论与ANSYS 11.0应用[M]. 北京: 机械工业出版社, 2009.
[14] 付永领,祁晓野.AMESim系统建模和仿真:从入门到精通[M].北京: 北京航空航天大学出版社, 2006.
[15] GRAVER J. Underwater gliders: dynamics, control, and design [D]. New Jersey: Princeton University, 2005: 229-236.

[1] 康轶非,宋永端,宋宇,闫德立. 不依赖里程计的机器人定位与地图构建[J]. J4, 2014, 48(3): 414-422.
[2] 陈明芽, 项志宇, 刘济林. 单目视觉自然路标辅助的移动机器人定位方法[J]. J4, 2014, 48(2): 285-291.
[3] 陈庆诚,朱世强,王宣银,张学群. 基于旋量理论的串联机器人逆解子问题求解算法[J]. J4, 2014, 48(1): 8-14.
[4] 林颖, 龚小谨, 刘济林. 基于单位视球的鱼眼相机标定方法[J]. J4, 2013, 47(8): 1500-1507.
[5] 吴文祥, 朱世强, 靳兴来. 基于改进傅里叶级数的机器人动力学参数辨识[J]. J4, 2013, 47(2): 231-237.
[6] 陈伟海, 陈泉柱, 刘荣, 张建斌, 崔翔. 绳驱动拟人臂机器人回零算法分析[J]. J4, 2013, 47(2): 345-352.
[7] 王会方, 朱世强, 吴文祥. 谐波驱动伺服系统的改进自适应鲁棒控制[J]. J4, 2012, 46(10): 1757-1763.
[8] 欧阳柳,徐进,龚小谨,刘济林. 基于不确定性分析的视觉里程计优化[J]. J4, 2012, 46(9): 1572-1579.
[9] 马丽莎, 周文晖, 龚小谨, 刘济林. 基于运动约束的泛化Field D*路径规划[J]. J4, 2012, 46(8): 1546-1552.
[10] 金波, 陈诚,李伟. 基于能耗优化的六足步行机器人力矩分配[J]. J4, 2012, 46(7): 1168-1174.
[11] 路丹晖, 周文晖, 龚小谨, 刘济林. 视觉和IMU融合的移动机器人运动解耦估计[J]. J4, 2012, 46(6): 1021-1026.
[12] 王会方, 朱世强, 吴文祥. 基于INSGA-Ⅱ算法的机械手多目标轨迹规划[J]. J4, 2012, 46(4): 622-628.
[13] 徐进,沈敏一,杨力,王炜强,刘济林. 基于双目光束法平差的机器人定位与地形拼接[J]. J4, 2011, 45(7): 1141-1146.
[14] 陈家乾,柳玉甜,何衍,蒋静坪. 基于栅格模型和样本集合的动态环境地图创建[J]. J4, 2011, 45(5): 794-798.
[15] 丁渊明, 王宣银. 串联机械臂结构优化方法[J]. J4, 2010, 44(12): 2360-2364.