Please wait a minute...
浙江大学学报(工学版)
机械工程     
内曲线式端面配流水液压马达的优化设计
倪敬, 冯国栋, 王志强, 高殿荣, 许明
1. 杭州电子科技大学 机械工程学院,浙江 杭州 310018;
2. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310058;
3. 燕山大学 机械工程学院,河北 秦皇岛 066004
Optimization design of internal curve type water hydraulic motor with plain flow distribution
NI Jing, FENG Guo-dong, WANG Zhi-qiang, GAO Dian-rong, XU Ming
1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; 2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China; 3. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
 全文: PDF(3060 KB)   HTML
摘要:

针对内曲线式端面配流水液压马达工作存在的流量泄漏问题,改进定子轮廓曲线方程并建立马达关键摩擦副的泄漏模型,以总功率损失最小为目标函数,对摩擦面间隙进行优化设计.搭建水液压马达测试平台进行不同负载下的马达排量测试.试验结果表明:不同负载条件下流量模型均能较好反映马达输出流量随转速上升的变化情况,试验的真实误差率低于5%.水液压马达的流量特性得到明显改善,空载下的水液压马达容积效率最高可提升至94.71%.研究表明:柱塞与转子缸孔的间隙值是影响水液压马达泄漏流量的最主要参数,其次是配流体与转子体的端面间隙值.

Abstract: A high-order curve was proposed for the stator profile in order to address the flow leakage limitation of the internal curve type water hydraulic motor. Then flow leakage models for piston pair and distribution pair were established, respectively. The friction pair parameters were optimized using minimum total power loss as objective function based on the leakage models. The displacement performance of motor was experimentally investigated under different load conditions. The test results agreed well with the calculated values under various load conditions. The error rate of test was restricted within 5%. The flow characteristic was improved effectively and the volumetric efficiency reached a maximum of 94.71% at no-load state. Research indicates that the piston-liner clearance is the most critical factor determining the leakage flow, followed by the end clearance of port plate and rotor.
出版日期: 2017-05-01
CLC:  TH 137  
基金资助:

国家自然科学基金资助项目(51505111);浙江省自然科学基金资助项目(LQ16E050003);国家重点实验室开放基金资助项目(GZKF-201519).

通讯作者: 王志强,男,博士,讲师.ORCID: 0000-0002-3129-0886.     E-mail: wzq78452501@163.com
作者简介: 倪敬(1979—),男,教授,从事机电液一体化方面等研究. ORCID: 0000-0003-4973-7241. E-mail: nijing2000@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

倪敬, 冯国栋, 王志强, 高殿荣, 许明. 内曲线式端面配流水液压马达的优化设计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.05.014.

NI Jing, FENG Guo-dong, WANG Zhi-qiang, GAO Dian-rong, XU Ming. Optimization design of internal curve type water hydraulic motor with plain flow distribution. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.05.014.

参考文献(References):
[1] 赵继云,王温锐,谢腾飞.水马达开发与应用现状分析[J].机床与液压,2010,38(15): 120-122.
ZHAO Ji-yun, WANG Wen-rui, XIE Teng-fei. Water hydraulic motor,state of art [J]. Machine Tool & Hydraulics, 2010, 38(15): 120-122.
[2] 杨曙东,李壮云,朱玉泉.水液压传动的主要课题与研究进展[J].中国机械工程,2000,11(9): 1070-1073.
YANG Shu-dong, LI Zhuang-yun, ZHU Yu-quan. Main topics and research progress of water hydraulic transmission [J]. China Mechanical Engineering, 2000, 11(9): 1070-1073.
[3] 李壮云,贺小峰,余祖耀.水液压技术的发展、机遇与展望[J].流体传动与控制,2003,1(1): 13-19.
LI Zhuang-yun, HE Xiao-feng, SHE Zhu-yao. Development opportunity and prospective for water hydraulic technology [J]. Fluid Power Transmission & Control,2003,1(1): 13-19.
[4] 高殿荣,王志强.水液压马达的研究进展与展望[J].液压与气动,2014,(8): 1-8.
GAO Dian-rong,WANG Zhi-qiang. Research progress and development prospect of water hydraulic motors [J]. Chinese Hydraulics & Pneumatics,2014,(8): 1-8.
[5] 王益群,张伟.流体传动及控制技术的评述[J]. 机械工程学报,2003,39(10):95-99.
WANG Yi-qun,ZHANG Wei. Summary of fluid power transmission and control technology [J]. Journal of Mechanical Engineering, 2003, 39(10): 95-99.
[6] 黄国勤,贺小峰,朱玉泉.水液压泵柱塞摩擦副间隙优化及影响因素分析[J].中国机械工程,2011, 22(14):1668-1672.
HUANG Guo-qing,HE Xiao-feng,ZHU Yu-quan. Analysis on optimal clearance of piston friction pair and its influence factors for water hydraulic pump [J]. China Mechanical Engineering,2011, 22(14): 1668-1672.
[7] 王志强,高殿荣,黄瑶.内曲线式水液压马达柱塞副的结构优化及性能研究[J].煤炭学报,2013,38(a.02): 536-542.
WANG Zhi-qiang,Gao Dian-rong,Huang Yao. Structural optimization and performance research on the piston pair of low speed high torque water hydraulic motor [J]. Journal of China Coal Society. 2013, 38(a.02):536-542.
[8] 王志强,高殿荣.水的黏度变化对内曲线式水液压马达柱塞副泄漏流量的影响[J].中国科技论文,2014,9(5): 568-573.
WANG Zhi-qiang,GAO Dian-rong. Influence of water viscosity variation on leakage flow of low speed high torque water hydraulic motor’s piston pair [J]. China Sciencepaper,2014, 9(5): 568-573.
[9] 刘桓龙,柯坚,王国志.水液压柱塞摩擦副的润滑特性研究[J].中国机械工程,2007,18(4): 434-439.
LIU Huan-long, KE Jian, WANG Guo-zhi. Research on the lubrication characteristics of water hydraulic piston friction pairs [J]. China Mechanical Engineering, 2007, 18(4): 434-439.
[10] 杨立洁,聂松林,张小军.全水润滑的斜盘式水液压柱塞马达的试验研究[J].北京工业大学学报,2013,39(7): 981-985.
YANG Li-jie,NIE Song-lin,ZHANG Xiao-jun. Experiment and research of water-lubrication swash-plate axial water hydraulic piston motor [J]. Journal of Beijing University of Technology, 2013, 39(7): 981-985.
[11] 方无迪,吴德发,刘银水.配流阀材料对水液压柱塞泵容积效率和噪声的影响[J].液压与气动,2014,(5): 109-111+117.
FANG Wu-di,WU De-fa,LIU Yin-shui. Influence of the port’ materials on the volumetric efficiency and noise characteristic of a water piston pump [J]. Chinese Hydraulics and Pneumatics,2014,(5): 109-111+117.
[12] WANG X,YAMAGUCHI A. Characteristics of hydrostatic bearing/seal parts for water hydraulic pumps and motors. part 2: on eccentric loading and power losses [J]. Tribology International, 2002, 35(7): 435-442.
[13] BERGADA J M,KUMAR S,Davies DL,et al. A complete analysis of axial piston pump leakage and output flow ripples [J]. Applied Mathematical Modelling, 2012, 36(4): 1731-51.
[14] KUMAR S,BERGADA J M. The effect of piston grooves performance in an axial piston pumps via cfd analysis [J]. International Journal of Mechanical Sciences, 2013, 66(66): 168-79.
[15] KUMAR S,BERGADA J M,WATTON J. Axial piston pump grooved slipper analysis by cfd simulation of three-dimensional NVS equation in cylindrical coordinates [J]. Computers & Fluids, 2009, 38(3):648-63.
[16] YANG Z, WU D F, CHEN J Y,et al. The analysis of piston-barrel leakage in a super high pressure water hydraulic piston pump [J]. Hydromechatronics Engineering,2012,(19): 39-42.
[17] NIE S L,HUANG G Q,LI Y P. Tribological study on hydrostatic slipper bearing with annular orifice damper for water hydraulic axial piston motor [J]. Tribology International,2006,39(1): 1342-1354.
[18] 高殿荣,王志强,赵一楠.径向低速大转矩水液压马达定子曲线特性分析[J].机械设计,2012,29(9): 29-35.
GAO Dian-rong, WANG Zhi-qiang, ZHAO Yi-nan. Analysis of stator torque water hydraulic curve characteristics of low speed high motor with radial piston [J]. Journal of Machine Design, 2012,29(9): 29-35.
[19] 高殿荣,王志强,温茂森,等.径向低速大扭矩水液压马达定子曲线分析[J].燕山大学学报,2011,35(6):493-500.
GAO Dian-rong,WANG Zhi-qiang,WEN Mao-sen,et al. Analysis of stator curve of low speed high torque water hydraulic motor with radial piston [J]. Journal of Yanshan University, 2011, 35(6):493-500.
[20] 许耀铭.油膜理论与液压泵和马达的摩擦副设计[M].第1版,北京:机械工业出版社,1987: 133-154.

[1] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[2] 赵艳龙,李醒飞,杨少波,李洪宇,徐佳毅,林越. 剖面浮标“浮星”可变浮力系统性能研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1240-1248.
[3] 王飞,龚国芳,段理文,秦永峰. 基于XGBoost的隧道掘进机操作参数智能决策系统设计[J]. 浙江大学学报(工学版), 2020, 54(4): 633-641.
[4] 张鹤然,欧阳小平,郭生荣,刘玉龙. 基于回油液阻的压力伺服阀啸叫分析[J]. 浙江大学学报(工学版), 2019, 53(11): 2085-2091.
[5] 陆亮,夏飞燕,訚耀保,原佳阳,郭生荣. 小球式旋转直驱压力伺服阀卡滞机理研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1265-1273.
[6] 曹文翰,龚俊,王宏刚,高贵,祁渊,杨东亚. 盖封密封磨损-热-应力耦合模拟与优化设计[J]. 浙江大学学报(工学版), 2019, 53(2): 258-267.
[7] 欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1111-1118.
[8] 丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报(工学版), 2017, 51(6): 1126-1134.
[9] 张强, 魏建华, 时文卓. 采用软溢流模糊PID控制器的液压垫压边力控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1143-1152.
[10] 丁加新, 陈英龙, 周华. 水辅成型浮动芯注射对制品残余壁厚的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 937-945.
[11] 徐兵, 苏琦, 张军辉, 陆振宇. 比例放大器驱动电路特性分析及控制器设计[J]. 浙江大学学报(工学版), 2017, 51(4): 800-806.
[12] 杜睿龙, 陈英龙, 周华, 王佳. 新型高速单柱塞轴向柱塞泵配流机构[J]. 浙江大学学报(工学版), 2016, 50(10): 1902-1910.
[13] 王建森, 刘耀林, 冀宏, 王鹏飞. 非全周开口滑阀运动过程液动力数值计算[J]. 浙江大学学报(工学版), 2016, 50(10): 1922-1926.
[14] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[15] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.