Please wait a minute...
浙江大学学报(工学版)
动力与能源工程     
带扰流孔波纹板蓄热元件的分析
李鹏程1,2, 孙志坚1,2, 黄浩1,2, 程攻1,2, 胡亚才1,2
1. 浙江大学 热工与动力系统研究所,浙江 杭州,310027; 2. 浙江省制定与低温技术重点实验室,浙江 杭州 310027
Exergy analysis of heat transfer elements of corrugated plate with perforations
LI Peng cheng1,2, SUN Zhi jian1,2, HUANG Hao1,2, CHENG Gong1,2, HU Ya cai1,2
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027;2. Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou 310027
 全文: PDF(764 KB)   HTML
摘要:
针对带扰流孔波纹板蓄热元件强化传热的综合效果较难评价的问题,提出基于热力学定律的分析方法.采用瞬态实验方法得到了损与损系数随雷诺数的变化曲线,曲线表明损和损系数在雷诺数为4 400左右有一个转折点,转折点处损和损系数的数值均达到峰值.转折点存在的原因为流体的流态处于过渡态时流体的无规则运动变化剧烈,导致流体的熵增会随雷诺数的增大而增大使损和损系数数值达到最大,分别为41 kJ、0.65.转折点即为流体流态从过渡态转变到完全湍流的临界点.结果表明,分析方法可较合理地评价强化传热综合效果且转折点附近能量浪费严重.
Abstract:
A thermodynamic exergy analysis method was adopted in order to solve the problem that it is hard to evaluate the performance of corrugated plate heat transfer elements with perforations. Exergy loss curve and exergy loss coefficient curve were obtained by using transient test method. The curves both have a turning point at Reynolds number of about 4 400,and achieve the peak value at the turning point. The turning point was derived from the transition state that has violent irregular intense motions, and the entropy increases with the rising Reynolds number, making exergy loss and exergy loss coefficient get the maximum value of 41 kJ and 0.65, respectively. Turning point is the critical point of transition state to fully turbulent. The result shows that the exergy analysis method can evaluate the effect of heat transfer enhancement reasonably, and serious energy waste happens near the turning point.
出版日期: 2016-02-01
:  TK 124  
基金资助:

金华市科学技术研究计划重点资助项目(20131031).

通讯作者: 孙志坚,男,副教授.ORCID: 0000 0003 0615 3422.     E-mail: sun_zju@126.com
作者简介: 李鹏程(1989—),男,硕士生,从事强化对流传热研究. ORCID: 0000 0002 9904 5123. E-mail:865656233@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.02.015.

LI Peng cheng, SUN Zhi jian, HUANG Hao, CHENG Gong, HU Ya cai. Exergy analysis of heat transfer elements of corrugated plate with perforations. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.02.015.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.02.015        http://www.zjujournals.com/eng/CN/Y2016/V50/I2/306

[1] 林宗虎,徐通模.实用锅炉手册[M].北京:化学工业出版社,2009: 324-341.
[2] 国家电力公司电力机械局等.电站锅炉空气预热器[M].北京:中国电力出版社,2002: 53-67.
[3] SAHIN B,DEMIR A. Performance analysis of a heat exchanger having perforated square fins [J]. Applied Thermal Engineering,2008,28: 621-632.
[4] SAHIN B,DEMIR A. Thermal performance analysis and optimum design parameters of heat exchanger having perforated pin fins [J]. Energy Conversion and Management,2008,49: 1684-1695.
[5] KARABACAK R,YAKAR G. Forced convection heat transfer and pressure drop for a horizontal cylinder with vertically attached imperforate and perforated circular fins [J]. Energy Conversion and Management,2011,52: 2785-2793.
[6] SHAERI  M R,YAGHOUBI M. Numerical analysis of turbulent convection heat transfer from an array of perforated fins [J]. International Journal of Heat and Fluid Flow,2009,30: 218-228.
[7] SHAERI M R,YAGHOUBI M. Thermal enhancement from heat sinks by using perforated fins [J]. Energy Conversion and Management,2009,50: 1264-1270.
[8] ZHANG L,CHE D F. Influence of corrugation profile on the thermal hydraulic performance of Cross Corrugated plates [J]. Numerical Heat Transfer,Part A: Applications,2011,59(4): 267-296.
[9] FOCKE W, ZACHARIADES J, OLIVIER I. The effect of the corrugation inclination angle on the thermol hydraulic performance of plate heat exchangers [J]. International Journal of Heat and Mass Transfer, 1985, 28(8): 1469-1479.
[10] CIOFALO M,STASIEK J,COLLINS M.W. Investigation of flow and heat transfer in corrugated passages—II. Numerical simulations [J]. International Journal of Heat and Mass Transfer, 1996, 39(1): 165-192.
[11] ZHANG L Z. Turbulent three dimensional air flow and heat transfer in a cross corrugated triangular duct [J]. ASME Journal of Heat Transfer, 2005, 127(10): 1151-1158.
[12] JAIN S,JOSHI A,BANSAL P.K. A new approach to numerical simulation of small sized plate heat exchangers with chevron plates [J]. ASME Journal of Heat Transfer,2007,129(3): 291-297.
[13] WANG Q W,ZHANG D J,XIE G N. Experimental study and genetic algorithm based correlation on pressure drop and heat transfer performances of a cross corrugated primary surface heat exchanger [J]. ASME Journal of Heat Transfer, 2009, 131(6): 061802.
[14] 李建军,陈江平,陈芝久. 低雷诺数流动错位翅片传热和压降特性的实验研究[J]. 能源技术,2004,25(4):147-149.
LI Jian ju,CHEN Jiang ping,CHEN Zhi jiu.Experimental study of heat transfer and pressure drop characteristics of the offset strip fin in low Reynolds number [J]. Energy Technology,2004,25(4):147-149.
[15] 吴双应,牟志才,刘泽筠. 换热器性能的经济评价[J].热能动力工程,1999,14(84): 437-440.
WU Shuang ying,MOU Zhi cai,LIU Ze jun. Exergy economic evaluation of a heat exchanger performance [J]. Journal of Engineering for Thermal Energy & Power,1999,14(84): 437-440.
[16] 吴存真,张诗针,孙志坚. 热力过程分析基础[M].杭州:浙江大学出版社,2000: 1-2.
[17] LUO X,WILFRIED R,ULRICH L. The single blow transient testing technique considering longitudinal core conduction and fluid dispersion [J]. International Journal of Heat and Mass Transfer,2001, 44: 121-129.
[18] CHANG Z C, HUNG M S, DING P P, et al. Experimental evaluation of thermal performance of Gifford McMahon regenerator using an improved single blow model with radial conduction [J]. International Journal of Heat and Mass Transfer, 1999, 42: 405-413.
[19] CHEN P H, CHANG Z C. Measurements of thermal performance of cryocooler regenerators using an improved single blow method [J]. International Journal of Heat and Mass Transfer,1997,40(10): 2341-2349.
[20]  SHAJI K, SARIT K D. The effect of flow maldistribution on the evaluation of axial dispersion and thermal performance during the single blow testing of plate heat exchangers [J]. International Journal of Heat and Mass Transfer,2010,53: 1591-1602.
[21] ZHANG L,CHE D F. An experimental and numerical investigation on the thermal hydraulic performance of double notched plate [J]. ASME Journal of Heat Transfer, 2012, 134(9): 091802.
[22] SHEER T J,DEKLERK G B,JAWUREK H H,et al. A versatile computer simulation model for rotary regenerative heat exchangers [J]. Heat Transfer Engineering,2006,27(5): 68-79.
[23] 邱丽霞,陈光利,张静媛. 回转式空气预热器漏风的分析[J]. 热力发电,2007(8): 52-54.
QIU Li xia,CHEN Guang li,ZHANG Jing yuan. Exergy analysis of air leakage in rotary air preheaters [J]. Thermal Power Generation,2007(8): 52-54.
[24] 伊.普利戈金. 从存在到演化[M]. 北京:北京大学出版社,2007: 95-136.

[1] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[2] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[3] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[4] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[5] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[6] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[7] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[8] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[9] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[10] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[11] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[12] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[13] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[14] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[15] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.