Please wait a minute...
浙江大学学报(工学版)
能源工程     
微小管径圆管气-液Taylor流动数值模拟
张井志, 李蔚
浙江大学 能源工程学系,浙江 杭州,310027
Numerical simulation of gas-liquid Taylor flow in mini/micro tubes
ZHANG Jing-zhi, LI Wei
Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1045 KB)   HTML
摘要:

采用移动计算域方法,对微小圆管(管径为0.5、1、2 mm)内充分发展的气-液Taylor流动进行数值研究,分析Taylor气泡的形状、上升速度、液膜厚度及压降特性.将数值结果与文献数据及经验公式进行对比,吻合较好.模拟结果表明,随入口雷诺数增大,气泡尾部不稳定区域增大.气泡长度及内部回流区随气泡体积分数增大而增大.无量纲液膜厚度与气泡上升速度与毛细数正相关,与管径以及气泡体积分数关系较小.当毛细数小于0.01时,修正液膜厚度的预测公式、预测值与模拟结果的误差在±15%以内.计算域阻力因子随着入口雷诺数与气泡体积分数的增大而降低,分离模型以及流型依赖模型可以较好地预测本文模拟结果. 

Abstract:

 A numerical simulation of fully developed gas-liquid Taylor flow in mini/micro tubes with tube diameters of 0.5, 1, and 2 mm was conducted with the moving frame method. The bubble shape, bubble rising velocity, liquid film thickness, and pressure drop characteristics of Taylor flow were analyzed. The numerical data fit well with theresults in open literatures and empirical correlations.The results show that the unstable region nearthe bubble tail increases with increasing inlet Reynolds number. The length of Taylor bubbleand inner recirculation zone increases with increasing initial bubble void fraction.Thenormalized liquid film thickness and bubble rising velocityare proportional to capillary number, while they are independent on tube diameters and bubble void fraction. The correlation to predict normalized liquid film thicknessis amended with the data obtained from the present work and open literatures forcapillary number smaller than 0.01. The deviations ofthe predicted value from thenumerical data are less than ±15%. The frictionalfactorof the whole computation domain decreases with increasing Reynolds number and with increases in bubble void fraction. The separate model and flow pattern dependent model can predict frictional pressure dropgradients well.

出版日期: 2015-08-01
:  TK 124  
基金资助:

国家自然科学基金重大国际合作资助项目(51210011);浙江省自然科学基金资助项目(Z13E060001).

通讯作者: 李蔚,男,教授,博导.     E-mail: weili96@zju.edu.cn
作者简介: 张井志(1988—),男,博士生.从事微通道内的两相流动换热阻力研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.08.024.

ZHANG Jing-zhi, LI Wei. Numerical simulation of gas-liquid Taylor flow in mini/micro tubes. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.08.024.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.08.024        http://www.zjujournals.com/eng/CN/Y2015/V49/I8/1572

[1] TRIPLETT K, GHIAASIAAN S, ABDEL K S, et al. Gas-liquid two-phase flow in microchannels Part I: two-phase flow patterns [J]. International Journal of Multiphase Flow, 1999, 25(3): 377-394.
[2] ZHAO T S, BI Q C. Co-current air-water two-phase flow patterns in vertical triangular microchannels [J]. International Journal of Multiphase Flow, 2001, 27(5): 765-782.
[3] LIU H, VANDU C O, KRISHNA R. Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop [J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 4884-4897.
[4] KREUTZER M T, EIJNDEN M G V D, KAPTEIJN F, et al. The pressure drop experiment to determine slug lengths in multiphase monoliths [J]. Catalysis Today, 2005, 105(3/4): 667-672.
[5] HAN Y, SHIKAZONO N. Measurement of liquid film thickness in micro square channel [J]. International Journal of Multiphase Flow, 2009, 35(10): 896-903.
[6] QIAN D, LAWAL A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel [J]. Chemical Engineering Science, 2006, 61(23): 7609-7625.
[7] GUPTA R, FLETCHER D F, HAYNES B S. On the CFD modelling of Taylor flow in microchannels [J]. Chemical Engineering Science, 2009, 64(12): 2941-2950.
[8] SHAO N, SALMAN W, GAVRIILIDIS A, et al. CFD simulations of the effect of inlet conditions on Taylor flow formation [J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1603-1611.
[9] TALIMI V, MUZYCHKA Y S, KOCABIYIK S. Slug flow heat transfer in square microchannels [J]. International Journal of Heat and Mass Transfer, 2013, 62(0): 752-760.
[10] KREUTZER M T, KAPTEIJN F, MOULIJN J A, et al. Inertial and interfacial effects on pressure drop of Taylor flow in capillaries [J]. AIChE Journal, 2005, 51(9): 2428-2440.
[11] TAHA T, CUI Z F. CFD modelling of slug flow inside square capillaries [J]. Chemical Engineering Science, 2006, 61(2): 665-675.
[12] ZHENG D, HE X, CHE D. CFD simulations of hydrodynamic characteristics in a gas-liquid vertical upward slug flow [J]. International Journal of Heat and Mass Transfer, 2007, 50(21): 4151-4165.
[13] LIU D, WANG S. Hydrodynamics of Taylor flow in noncircular capillaries [J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(12): 2098-2106.
[14] ARAJO J D P, MIRANDA J M, PINTO A M F R, et al. Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids [J]. International Journal of Multiphase Flow, 2012, 43(0): 131-148.
[15] ASADOLAHI A N, GUPTA R, FLETCHER D F, et al. CFD approaches for the simulation of hydrodynamics and heat transfer in Taylor flow [J]. Chemical Engineering Science, 2011, 66(22): 5575-5584.
[16] ASADOLAHI A N, GUPTA R, LEUNG S S Y, et al. Validation of a CFD model of Taylor flow hydrodynamics and heat transfer [J]. Chemical Engineering Science, 2012, 69(1): 541-552.
[17] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface-tension [J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[18] YOUNGS D. Time-dependent multi-material flow with large fluid distortion [M]. [S. l.] :Academic Press, 1982: 273-285.
[19] AUSSILLOUS P, QUR D. Quick deposition of a fluid on the wall of a tube [J]. Physics of Fluids, 2000, 12(10): 2367-2371.
[20] LOCKHART R, MARTINELLI R. Proposed correlation of data for isothermal two-phase, two-component flow in pipes [J]. Chem Eng Prog, 1949, 45(1): 39-48.
[21] LI W, WU Z. A general correlation for adiabatic two-phase pressure drop in micro/mini-channels [J]. International Journal of Heat and Mass Transfer, 2010, 53(13-14): 2732-2739.
[22] KIM S M, MUDAWAR I. Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling [J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2):718-734.

[1] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[2] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[3] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[4] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[5] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[6] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[7] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[8] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[9] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[10] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[11] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[12] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[13] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[14] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[15] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.