Please wait a minute...
浙江大学学报(工学版)
能源工程与动力工程     
烧结矿立式冷却装置气固传热性能分析
黄连锋1,田付有1,厉青2,范利武1,俞自涛1,武海云2
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027;2. 浙江华西铂瑞重工有限公司,浙江 杭州 310030
Analysis of gas-solid heat transfer performance in vertically-arranged sinter coolers
HUANG Lian-feng1,TIAN Fu-you1,LI Qing2,FAN Li-wu1,YU Zi-tao1,WU Hai-yun2
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China; 2. Zhejiang CWPC and BR Heavy Industry Co., Ltd, Hangzhou 310030, China
 全文: PDF(909 KB)   HTML
摘要:

为了分析烧结矿立式冷却装置的气固传热性能,建立一维稳态模型对料层气固传热进行计算,以回收的空气热量与空气作为评判标准,比较不同工况下的余热回收能力. 采用数值迭代算法求解模型. 结果表明,对于给定尺寸的烧结矿立式冷却装置和相同特性的烧结矿颗粒,烧结矿入口温度每增加10 ℃,空气值平均升高1.28 GJ/h;空气入口温度(环境温度)每增加10 ℃,空气值平均降低1.69 GJ/h;随着气料比从550到700 m3/t(标准状况下)逐渐增加,空气值增大至49.51 GJ/h后明显减小. 随着空气入口温度的增加,最大空气下降,对应的最佳气料比却升高;随着烧结矿入口温度的增加,最大空气及对应的最佳气料比均升高. 研究结果为生产实际中在工况改变的情况下通过调节气料比获得最大余热回收性能提供了参考.

Abstract:

 In order to analyze the gas-solid heat transfer performance in vertically-arranged sinter coolers, a one-dimensional steady-state model was established to evaluate the gas-solid heat transfer in a sinter bed. The amounts of energy and exergy recovered were used as the criteria to compare the waste heat recovery ability under different operating conditions. The model was solved numerically by an iterative algorithm. The results indicate that, when the size of vertically-arranged sinter coolers and the sinter particle parameters are given,the average air exergy increase is  1.28 GJ/h for each 10 ℃ increase of the sinter inlet temperature;whereas it decreases by 1.69 GJ/h for each 10  ℃ increase of the air inlet temperature(ambient temperature).With the gas-to-sinter flow rate ratio being increased from 550 to 700 m3/t (at standard temperature and pressure), the air exergy first increases toup to 49.51 GJ/h, followed by a sudden drop.Increasing the air inlet temperature leads to a drop of the maximum air exergy, while the corresponding optimal flow rate ratio increases. However, both the maximum air exergy and its corresponding optimal flow rate ratio increase with raising the sinter inlet temperature. The results presented may serve as a reference to maximize waste heat recovery in industrial practice by adjusting the flow rate ratio.

出版日期: 2015-12-26
:  TK 124  
基金资助:

浙江铂瑞能源环境工程有限公司科学技术项目(H20131352)

通讯作者: 俞自涛,男,教授     E-mail: yuzitao@zju.edu.cn
作者简介: 黄连锋(1990-),男,硕士生,从事余热利用技术研究. E-mail: wanglitou2@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.05.015.

HUANG Lian-feng,TIAN Fu-you,LI Qing,FAN Li-wu,YU Zi-tao,WU Hai-yun. Analysis of gas-solid heat transfer performance in vertically-arranged sinter coolers. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.05.015.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.05.015        http://www.zjujournals.com/eng/CN/Y2015/V49/I5/916

[1] 蔡九菊,王建军,陈春霞,等. 钢铁企业余热资源的回收与利用[J]. 钢铁,2007,42(6):17.
CAI Jiu-ju,WANG Jian-jun,CHEN Chun-xia,et al. Recovery of residual-heat integrated steelworks [J]. Iron & Steel,2007,42(6):17.
[2] 姚华,盛德仁,林张新,等. 炼铁伴生能源联合循环系统热力学性能分析[J]. 浙江大学学报:工学版,2011,45(11):2008-2013.
YAO Hua,SHENG De-ren,LIN Zhang-xin,et al. Thermal performance analysis of associated energy combined cycle system in iron making process [J]. Journal of Zhejiang University :Engineering Science,2011,45(11):2008-2013.
[3] 商秀芹,卢建刚,孙优贤. 基于遗传规划的铁矿烧结终点2级预测模型[J]. 浙江大学学报:工学版,2010,44(7):1266-1269.
SHANG Xiu-qin,LU Jian-gang,SUN You-xian. Genetic program in based two prediction model of iron ore burning through point [J]. Journal of Zhejiang University :Engineering Science,2011,44(7):1266-1269.
[4] COTTON R S. Self-sealing sintering machine and sinter cooler:United States,3059912[P]. 1962-10-23.
[5] 董辉,赵勇,蔡九菊,等. 烧结—冷却系统的漏风问题 [J]. 钢铁,2012,47(1):95-99.
DONG Hui,ZHAO Yong,CAI Jiu-ju,et al. Leakage of sintering-cooling system [J]. Iron & Steel,2012,47(1):95-99.
[6] 张玉柱,赵斌,张尉然,等. 一种可高效回收烧结矿显热的立式烧结矿冷却机:中国,2009100745136[P]. 2009-06-23.
ZHANG Yu-zhu,ZHAO Bing,ZHANG Wei,et al. One vertically-oriented sinter cooling machine for effective sensible heat recovery of sinter:China,2009100745136[P]. 2009-6-23.
[7] 蔡九菊,董辉. 烧结过程余热资源的竖罐式回收装置与利用方法:中国,2009101873818[P]. 2009-09-15.
CAI Jiu-ju,DONG Hui. The method and device of sintering waste heat recovery and utilization with vertical tank:China,2009101873818[P]. 2009-09-15.
[8] TADAYUKI M,YUJIRO S. Heat transfer and fluid analysis of sinter coolers with consideration of size segregation and initial temperature distribution [J]. Heat Transfer Japanese. Research,1990,19(6):537-555.
[9] CAPUTO A C,CARDARELLI G,PELAGAGGE P M. Analysis of heat recovery in gas-solid moving beds using a simulation approach [J]. Applied Thermal Engineering,1996,16(1):89-99.
[10] CAPUTO A C,PELAGAGGE P.M. Heat recovery from moving cooling beds:transient modeling by dynamic simulation [J]. Applled Thermal Engineering,1999,19(1):21-35.
[11] 张欣,温治,楼国锋,等. 高温烧结矿气固换热过程数值模拟及参数分析[J]. 北京科技大学学报,2011,33(3):339-345.
ZHANG Xin,WEN Zhi,LOU Guo-feng,et al. Numerical smulation and parameters analysis on the gas-solid heat transfer process of high temperature sinter [J]. Journal of University of Science and Technology Beijing,2011,33(3):339-345.
[12] ZHANG X H,CHEN Z,ZHANG J Y,et al. Simulation and optimization of waste heat recovery in sinter cooling process [J]. Applied Thermal Engineering, 2013, 54(1), 715.
[13] LIU Y,YANG J,WANG J,et al. Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed [J]. Energy,2014,67:370-380.
[14] 董辉,李磊,蔡九菊,等. 烧结余热回收竖罐内料层传热过程数值计算[J]. 东北大学学报:自然科学版,2012,33(9):1299-1302.
Dong Hui,LI Lei,CAI Jiu-ju,et al. Numerical smulation of heat exchange in vertical tank of waste heat recovery [J]. Journal of Northeastern University:Natural Science,2012,33(9):1299-1302.
[15] 董辉,力杰,罗远秋,等. 烧结矿冷却过程的实验研究[J]. 东北大学学报:自然科学版,2010,31(5):689-692.
DONG Hui,LI Jie,LUO Yuan-qiu,et al. Experimental study on cooling process of sinter [J]. Journal of Northeastern University:Natural Science,2010,31(5):682-692.
[16] 董辉,冯军胜,李磊,等.冷却风量影响烧结余热竖罐内传递系数实验研究[J]. 东北大学学报:自然科学版,2014,35(5):708-711.
DONG Hui,FENG Jun-sheng,LI Lei,et al. Experimental study on exergy transfer coefficient affected by cooling air volume in vertical tank of waste heat recovery [J]. Journal of Northeastern University:Natural Science,2014,35(5):708-711.
[17] LIU H F,ZHANG X X,WU M L,et al. Computational and experimental study of cooling process in coke dry quenching experiment shaft [J]. Journal of Thermal Science,2002,11(2):121-127.
[18] KUNII D,SUZUKI M. Particle-to-fluid heat and mass transfer in packed beds of fine particles [J]. International Journal of Heat and Mass Transfer, 1967, 10(24): 845852.
[19] HARTMAN M,TRNKA O,SVOBODA V. Fluidization characteristics of dolomite and calcined dolomite particles [J]. Chemical Engineering Science,2000,55:62696274.
[20] 潘立慧,魏松波,等. 干熄焦技术[M]. 北京:冶金工业出版社,2005:251-274.
[21] 孔宁,温治,冯俊小,等. 干熄炉内流动与传热过程数学模型的研究[J]. 冶金自动化,2004,24(3):27-30.
KONG Ning,WEN Zhi,FENG Jun-xiao. Study on one-dimension on-line mathematical model for flowing and heat transferring in CDQ unit [J]. Metallurgical Industry Automation,2004,24(3):27-30.
[22] JB/T90143-1999.连续输送设备散粒物料粒度和颗粒组成的测定[S]. 北京:机械科学研究院,1999.
JB/T90143-1999, Continuous handling equipment - loose bluk material - Determination of composition of size and pellet [S]. Beijing:China Academy of machinery Science & Technology,1999.
[23] GB/T24586-2009.铁矿石表观密度、真密度和孔隙率的测定[S]. 北京:中国标准出版社,2009.
GB/T24586-2009,Iron ores—Determination of apparent density,true density and porosity [S]. Beijing∶Standards Press of China,2009.
[24] GB/T14202-93.铁矿石(烧结矿、球团矿)容积密度测定方法[S]. 北京:中国标准出版社,1993.
GB/T14202-93.Iron ores (sinter and pellets) - Determination of bulk density [S]. Beijing:Standards Press of China,1993.
[25] 罗远秋. 烧结矿冷却过程实验与数值模拟研究[D]. 沈阳. 东北大学,2009:50,69.
LUO Yuan-qiu. Experimental and simulant study on cooling process of sinter [D]. Shenyang. Northeastern University,2009:50,69.

[1] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[2] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[3] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[4] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[5] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[6] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[7] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[8] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[9] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[10] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[11] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[12] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[13] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[14] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[15] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.