Please wait a minute...
J4  2011, Vol. 45 Issue (8): 1490-1497    DOI: 10.3785/j.issn.1008-973X.2011.08.028
自动化技术     
基于经济指标的分层递阶控制系统性能评估
傅若玮, 宋执环
浙江大学 工业控制研究所,工业控制技术国家重点实验室, 浙江 杭州 310027
Economic-based performance assessment of hierarchical control systems
FU Ruo-wei, SONG Zhi-huan
State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control,
Zhejiang University, Hangzhou310027, China
 全文: PDF  HTML
摘要:

为了解决复杂多变量过程工业平稳安全运行与经济效益最大化共同实现的问题,提出一种分层递阶控制结构的性能评估方法.通过分析分层递阶控制的直接控制、约束控制和实时优化三层垂直结构,构建出抑制扰动、不违反约束和经济效益最大化的控制目标函数.通过计算该控制系统的最优-最差性能区间,给出了一种面向经济性能的评估基准和新的评估指标,提出一种根据开环模型和调节器参数计算被控系统广义对象模型的方法,在此基础上实时监测和评估过程的生产经济效益,并分析存在的最大提升潜力,能有效减少模型与真实对象失配引起的控制性能下降.对Shell重油分馏塔模型的仿真结果表明了本文方法的可靠性和有效性.

Abstract:

In order to ensure multivariable industrial processes operating in a safe and economic mode, a method for control performance assessment of hierarchical control systems was proposed. The three-layer structure of a hierarchical control system: direct control layer, constraint control layer and real-time optimization layer, was analyzed to formulate the control objective functions of three aspects: suppressing disturbances, keeping constraints and maximizing process profits, respectively. A control performance assessment benchmark called “best to worst performance range” was established to monitor the economic performance of industrial processes, and to evaluate how much potential would be improved. To avoid the degradation of control performance due to model-plant mismatch, a method to compute generalized object model through open loop model and regulatory parameters was presented. The reliability and efficacy of the proposed performance assessment technique is demonstrated on a case study on Shell heavy oil fractionator control problem.

出版日期: 2011-09-08
:  TP 273  
基金资助:

国家自然科学基金资助项目(60774067,60736021);国家“863”高技术研究发展计划资助项目(2009AA04Z154).

通讯作者: 宋执环,男,教授,博导.     E-mail: zhsong@iipc.zju.edu.cn
作者简介: 傅若玮(1984—),女,博士生,从事过程控制性能评估及故障诊断的研究工作.E-mail: rwfu@iipc.zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

傅若玮, 宋执环. 基于经济指标的分层递阶控制系统性能评估[J]. J4, 2011, 45(8): 1490-1497.

FU Ruo-wei, SONG Zhi-huan. Economic-based performance assessment of hierarchical control systems. J4, 2011, 45(8): 1490-1497.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.08.028        https://www.zjujournals.com/eng/CN/Y2011/V45/I8/1490

[1] 柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战[J].自动化学报,2009,35(6): 641-649.
CHAI Tianyou. Challenges of optimal control for plantwide production processes in terms of control and optimization theories [J]. Acta Automatica Sinica, 2009, 35(6): 641-649.
[2] TATJEWSKI P. Advanced control of industrial processes: structures and algorithms [M]. London: Springer, 2007: 1-29.
[3] SCATTOLINI R. Architectures for distributed and hierarchical Model Predictive ControlA review [J]. Journal of Process Control, 2009, 19(5): 723-731.
[4] TATJEWSKI P. Advanced control and online process optimization in multilayer structures [J]. Annual Reviews in Control, 2008, 32(1): 71-85.
[5] HARRIS T J. Assessment of control loop performance [J]. Canadian Journal of Chemical Engineering, 1989, 67(10): 856-861.
[6] HARRIS T J, BOUDREAU F, MACGREGOR J F. Performance assessment of multivariable feedback controllers [J]. Automatica, 1996, 32(11): 1505-1518.
[7] XU Fangwei, HUANG Biao. Performance assessment of model predictive control for variability and constraint tuning [J]. Industrial & Engineering Chemistry Research.,2007, 46(4): 1208-1219.
[8] ZHAO Chao, ZHAO Yu, SU Hongye et al. Economic performance assessment of advanced process control with LQG benchmarking [J]. Journal of Process Control, 2009, 19(4): 557-569.
[9] CAMPO P J, HOLCOMB T R, GELORMINO M S, et al. Decentralized control system design for a heavy oil fractionator: the Shell control problem [C]∥ The Second Shell Process Control Workshop: Solutions to the Shell Standard Control Problem. Stoneham,MA: Butterworths, 1990: 315-365.
[10] PRETT D M, MORARI M. Shell process control workshop [M]. Stoneham: Butterworth Publishers, 1987: 350-360.
[11] VLACHOS C, WILLIAMS D, GOMM J B. Solution to the Shell standard control problem using genetically tuned PID controllers [J]. Control Engineering Practice, 2002, 10(2): 151-163.
[12] YING C M, JOSEPH B. Performance and stability analysis of LPMPC and QPMPC cascade control systems [J]. AIChE Journal, 1999, 45(7): 1521-1534.
[13] KETTUNEN M, ZHANG P, JAMSAJOUNELA S L. An embedded fault detection, isolation and accommodation system in a model predictive controller for an industrial benchmark process [J]. Computers and Chemical Engineering, 2008, 32(12): 2966-2985

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[6] 叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.
[7] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[8] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[9] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[10] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[11] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[12] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[13] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[14] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[15] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.